Yun-Fang Yang
Peking University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yun-Fang Yang.
Nature | 2015
Liana Hie; Noah F. Fine Nathel; Tejas K. Shah; Emma L. Baker; Xin Hong; Yun-Fang Yang; Peng Liu; K. N. Houk; Neil K. Garg
Amides are common functional groups that have been studied for more than a century. They are the key building blocks of proteins and are present in a broad range of other natural and synthetic compounds. Amides are known to be poor electrophiles, which is typically attributed to the resonance stability of the amide bond. Although amides can readily be cleaved by enzymes such as proteases, it is difficult to selectively break the carbon–nitrogen bond of an amide using synthetic chemistry. Here we demonstrate that amide carbon–nitrogen bonds can be activated and cleaved using nickel catalysts. We use this methodology to convert amides to esters, which is a challenging and underdeveloped transformation. The reaction methodology proceeds under exceptionally mild reaction conditions, and avoids the use of a large excess of an alcohol nucleophile. Density functional theory calculations provide insight into the thermodynamics and catalytic cycle of the amide-to-ester transformation. Our results provide a way to harness amide functional groups as synthetic building blocks and are expected to lead to the further use of amides in the construction of carbon–heteroatom or carbon–carbon bonds using non-precious-metal catalysis.
Journal of the American Chemical Society | 2014
Yun-Fang Yang; Gui-Juan Cheng; Peng Liu; Dasheng Leow; Tian-Yu Sun; Ping Chen; Xinhao Zhang; Jin-Quan Yu; Yun-Dong Wu; K. N. Houk
Density functional theory investigations have elucidated the mechanism and origins of meta-regioselectivity of Pd(II)-catalyzed C-H olefinations of toluene derivatives that employ a nitrile-containing template. The reaction proceeds through four major steps: C-H activation, alkene insertion, β-hydride elimination, and reductive elimination. The C-H activation step, which proceeds via a concerted metalation-deprotonation (CMD) pathway, is found to be the rate- and regioselectivity-determining step. For the crucial C-H activation, four possible active catalytic species-monomeric Pd(OAc)2, dimeric Pd2(OAc)4, heterodimeric PdAg(OAc)3, and trimeric Pd3(OAc)6-have been investigated. The computations indicated that the C-H activation with the nitrile-containing template occurs via a Pd-Ag heterodimeric transition state. The nitrile directing group coordinates with Ag while the Pd is placed adjacent to the meta-C-H bond in the transition state, leading to the observed high meta-selectivity. The Pd2(OAc)4 dimeric mechanism also leads to the meta-C-H activation product but with higher activation energies than the Pd-Ag heterodimeric mechanism. The Pd monomeric and trimeric mechanisms require much higher activation free energies and are predicted to give ortho products. Structural and distortion energy analysis of the transition states revealed significant effects of distortions of the template on mechanism and regioselectivity, which provided hints for further developments of new templates.
Journal of the American Chemical Society | 2014
Gui-Juan Cheng; Yun-Fang Yang; Peng Liu; Ping Chen; Tian-Yu Sun; Gang Li; Xinhao Zhang; K. N. Houk; Jin-Quan Yu; Yun-Dong Wu
A combined experimental/computational study on the amino acid ligand-assisted Pd-catalyzed C-H bond activation reveals a mechanism in which the amino acid acts as both a dianionic bidentate ligand and a proton acceptor. This new model explains the effects of amino acids on reactivity and selectivity and unveils the dual roles of amino acids: stabilizing monomeric Pd complexes and serving as the internal base for proton abstraction.
Science | 2016
Gang Chen; Wei Gong; Zhe Zhuang; Michal S. Andrä; Yan-Qiao Chen; Xin Hong; Yun-Fang Yang; Tao Liu; K. N. Houk; Jin-Quan Yu
Effective differentiation of prochiral carbon–hydrogen (C–H) bonds on a single methylene carbon via asymmetric metal insertion remains a challenge. Here, we report the discovery of chiral acetyl-protected aminoethyl quinoline ligands that enable asymmetric palladium insertion into prochiral C–H bonds on a single methylene carbon center. We apply these palladium complexes to catalytic enantioselective functionalization of β-methylene C–H bonds in aliphatic amides. Using bidentate ligands to accelerate C–H activation of otherwise unreactive monodentate substrates is crucial for outcompeting the background reaction driven by substrate-directed cyclopalladation, thereby avoiding erosion of enantioselectivity. The potential of ligand acceleration in C–H activation is also demonstrated by enantioselective β-C–H arylation of simple carboxylic acids without installing directing groups.
Angewandte Chemie | 2016
Liana Hie; Noah F. Fine Nathel; Xin Hong; Yun-Fang Yang; K. N. Houk; Neil K. Garg
We report the first catalytic method for activating the acyl C-O bonds of methyl esters through an oxidative-addition process. The oxidative-addition adducts, formed using nickel catalysis, undergo in situ trapping to provide anilide products. DFT calculations are used to support the proposed reaction mechanism, to understand why decarbonylation does not occur competitively, and to elucidate the beneficial role of the substrate structure and the Al(OtBu)3 additive on the kinetics and thermodynamics of the reaction.
Journal of Organic Chemistry | 2014
Huan Sun; Chengming Wang; Yun-Fang Yang; Ping Chen; Yun-Dong Wu; Xinhao Zhang; Yong Huang
Indole-containing polyaromatic scaffolds are widely found in natural products, pharmaceutical agents, and π-conjugated functional materials. Often, the synthesis of these highly valuable molecules requires a multistep sequence. Therefore, a simple, one-step protocol to access libraries of polyaromatic indole scaffolds is highly desirable. Herein we describe the direct synthesis of polysubstituted indolo[2,1-a]isoquinoline analogues via a double C-H annulation cascade using triazene as an internally cleavable directing group. Evidence from HRMS and theoretical calculations suggests that an unprecedented 1,2-alkyl migration might be responsible for the in situ cleavage of the directing group. Both kinetic isotope effects and DFT calculations suggested that the alkyne insertion step is rate-limiting for the second C,N annulation reaction.
Journal of the American Chemical Society | 2017
Taoufik Ben Halima; Wanying Zhang; Imane Yalaoui; Xin Hong; Yun-Fang Yang; K. N. Houk; Stephen G. Newman
The Suzuki-Miyaura coupling is among the most important C-C bond-forming reactions available due to its reliability, chemoselectivity, and diversity. Aryl halides and pseudohalides such as iodides, bromides, and triflates are traditionally used as the electrophilic coupling partner. The expansion of the reaction scope to nontraditional electrophiles is an ongoing challenge to enable an even greater number of useful products to be made from simple starting materials. Herein, we present how an NHC-based Pd catalyst can enable Suzuki-Miyaura coupling where the C(acyl)-O bond of aryl esters takes on the role of electrophile, allowing the synthesis of various ketone-containing products. This contrasts known reactions of similar esters that provide biaryls via nickel catalysis. The underlying cause of this mechanistic divergence is investigated by DFT calculations, and the robustness of esters compared to more electrophilic acylative coupling partners is analyzed.
Journal of the American Chemical Society | 2016
Yun-Fang Yang; K. N. Houk; Yun-Dong Wu
The selective rhodium-catalyzed functionalization of arenes is greatly facilitated by oxidizing directing groups that act both as directing groups and internal oxidants. We report density functional theory (B3LYP and M06) investigations on the mechanism of rhodium(III)-catalyzed redox coupling reaction of N-phenoxyacetamides with alkynes. The results elucidated the role of the internal oxidizing directing group, and the role of Rh(III)/Rh(I) and Rh(III)/Rh(V) catalysis of C-H functionalizations. A novel Rh(III)-Rh(V)-Rh(III) cycle successfully rationalizes recent experimental observations by Liu and Lu et al. ( Liu , G. Angew. Chem. Int. Ed. 2013 , 52 , 6033 ) on the reactions of N-phenoxyacetamides with alkynes in different solvents. Natural Bond Orbital (NBO) analysis confirms the identity of Rh(V) intermediate in the catalytic cycle.
Chemistry: A European Journal | 2012
Yun-Fang Yang; Gui-Juan Cheng; Jun Zhu; Xinhao Zhang; Shigeyoshi Inoue; Yun-Dong Wu
Density functional theory calculations (B3LYP) have been carried out to investigate the 4π-electron systems of 2,4-disila-1,3-diphosphacyclobutadiene (compound 1) and the tetrasilacyclobutadiene dication (compound 2). The calculated nucleus-independent chemical shift (NICS) values for these two compounds are negative, which indicates that the core rings of compounds 1 and 2 have a certain amount of aromaticity. However, deep electronic analysis reveals that neither of these two formal 4π-electron four-membered ring systems is aromatic. Compound 1 has very weak, almost negligible antiaromaticity, and the amidinate ligands attached to the Si atoms play an important role in stabilizing this conjugated 4π-electron system. The monoanionic bidentate ligand interacts with the conjugated π system to cause π-orbital splitting. This ligand-induced π-orbital splitting effect provides an opportunity to manipulate the gap between occupied and unoccupied π orbitals in conjugated systems. Conversely, compound 2 is nonaromatic because its core ring does not have a conjugated π ring system and does not fulfill the requirements of a Hückel system.
Journal of the American Chemical Society | 2016
Yun-Fang Yang; Yong Liang; Fang Liu; K. N. Houk
The cycloadditions of benzene and ten different azabenzenes (pyridine, three diazines, three triazines, and three tetrazines) with the ethylene dienophile have been explored with density functional theory (M06-2X) and analyzed with the distortion/interaction model. Activation barriers correlate closely with both distortion energies and interaction energies over an activation energy range of 45 kcal/mol. The replacement of CH with N increases Diels-Alder reactivity due not only to the more favorable orbital interaction, but also to a decrease in distortion energy. The rates of reactions are greatly influenced by the nature of the bonds being formed: two C-C bonds > one C-C bond, and one C-N bond > two C-N bonds. The activation energy of Diels-Alder reactions correlates very well with reaction energies and with the NICS(0) values of the aromatic dienes. The distortion energy of the Diels-Alder reaction transition states mostly arises from the diene out-of-plane distortion energy.