Yun-Feng Guan
Second Military Medical University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yun-Feng Guan.
Cardiovascular Research | 2009
Pei Wang; Tian-Ying Xu; Yun-Feng Guan; Ding-Feng Su; Guo-Rong Fan; Chao-Yu Miao
AIMS Perivascular adipose tissue (PVAT) inhibits vascular smooth muscle cell (VSMC) contraction and stimulates VSMC proliferation by releasing protein factors. The present study was to determine whether visfatin is involved in these paracrine actions of PVAT, and if so, to explore the underlying mechanisms. METHODS AND RESULTS Visfatin was preferentially expressed in Sprague-Dawley rat and monkey aortic PVAT, compared with subcutaneous and visceral adipose tissues. The PVAT-derived visfatin was found to be a VSMC growth factor rather than a VSMC relaxing factor, which was proved by visfatin-specific antibody/inhibitor and direct observation of recombinant visfatin. Exogenous visfatin stimulated VSMC proliferation in a dose- and time-dependent manner via extracellular signal-regulated kinase (ERK 1/2) and p38 signalling pathways. This proliferative effect was further confirmed by enhancement of DNA synthesis and upregulation of proliferative marker Ki-67. Visfatin had no anti-apoptotic effect on normal cultured VSMCs, and it exerted an anti-apoptotic effect only during cell apoptosis induced by H2O2, excluding a role of anti-apoptosis in the visfatin-induced VSMC proliferation. Insulin receptor knockdown did not show any action on the visfatin effect. However, visfatin acted as a nicotinamide phosphoribosyltransferase to biosynthesize nicotinamide mononucleotide (NMN), which mediated proliferative signalling pathways and cell proliferation similar to the visfatin effect. CONCLUSION Visfatin stimulates VSMC proliferation via NMN-mediated ERK1/2 and p38 signalling. The present study provides a molecular link of visfatin to the paracrine action of PVAT, demonstrates a novel function of visfatin in promoting VSMC proliferation, and reveals NMN as a novel signalling molecule that triggers the proliferative process.
Annals of Neurology | 2011
Pei Wang; Tian-Ying Xu; Yun-Feng Guan; Wei-Wei Tian; Benoit Viollet; Yao-Cheng Rui; Qiwei Zhai; Ding-Feng Su; Chao-Yu Miao
Stroke is a leading cause of mortality and disability. Nicotinamide phosphoribosyltransferase (Nampt) is the rate‐limiting enzyme in mammalian nicotinamide adenine dinucleotide (NAD)+ biosynthesis and contributes to cell fate decisions. However, the role of Nampt in brain and stroke remains to be investigated.
Autophagy | 2012
Pei Wang; Yun-Feng Guan; Hui Du; Qiwei Zhai; Ding-Feng Su; Chao-Yu Miao
Recent reports indicate that autophagy serves as a stress response and may participate in pathophysiology of cerebral ischemia. Nicotinamide phosphoribosyltransferase (Nampt, also known as visfatin), the rate-limiting enzyme in mammalian NAD+ biosynthesis, protects against ischemic stroke through inhibiting neuronal apoptosis and necrosis. This study was taken to determine the involvement of autophagy in neuroprotection of Nampt in cerebral ischemia. Middle cerebral artery occlusion (MCAO) in rats and oxygen-glucose deprivation (OGD) in cultured cortical neurons were performed. Nampt was overexpressed or knocked-down using lentivirus-mediated gene transfer in vivo and in vitro. Immunochemistry (LC3-II), electron microscope and immunoblotting assays (LC3-II, beclin-1, mammalian target of rapamycin [mTOR], S6K1 and tuberous sclerosis complex-2 [TSC2]) were performed to assess autophagy. We found that overexpression of Nampt increased autophagy (LC3 puncta immunochemistry staining, LC3-II/beclin-1 expression and autophagosomes number) both in vivo and in vitro at 2 hours after MCAO. At the early stage of OGD, autophagy inducer rapamycin protected against neuronal injury induced by Nampt knockdown, whereas autophagy inhibitor 3-methyladenine abolished the neuroprotective effect of Nampt partly. Overexpression or knockdown of Nampt regulated the phosphorylation of mTOR and S6K1 signaling pathway upon OGD stress through enhancing phosphorylation of TSC2 at Ser1387 but not Thr1462 site. Furthermore, in cultured SIRT1-knockout neurons, the regulation of Nampt on autophagic proteins LC3-II and beclin-1 was abolished. Our results demonstrate that Nampt promotes neuronal survival through inducing autophagy via regulating TSC2-mTOR-S6K1 signaling pathway in a SIRT1-dependent manner during cerebral ischemia.
Diabetes | 2012
Pei Wang; Ruoyu Zhang; Jie Song; Yun-Feng Guan; Tian-Ying Xu; Hui Du; Benoit Viollet; Chao-Yu Miao
Whether the well-known metabolic switch AMP-activated protein kinase (AMPK) is involved in the insulin-sensitizing effect of calorie restriction (CR) is unclear. In this study, we investigated the role of AMPK in the insulin-sensitizing effect of CR in skeletal muscle. Wild-type (WT) and AMPK-α2−/− mice received ad libitum (AL) or CR (8 weeks at 60% of AL) feeding. CR increased the protein level of AMPK-α2 and phosphorylation of AMPK-α2. In WT and AMPK-α2−/− mice, CR induced comparable changes of body weight, fat pad weight, serum triglycerides, serum nonesterified fatty acids, and serum leptin levels. However, decreasing levels of fasting/fed insulin and fed glucose were observed in WT mice but not in AMPK-α2−/− mice. Moreover, CR-induced improvements of whole-body insulin sensitivity (evidenced by glucose tolerance test/insulin tolerance test assays) and glucose uptake in skeletal muscle tissues were abolished in AMPK-α2−/− mice. Furthermore, CR-induced activation of Akt-TBC1D1/TBC1D4 signaling, inhibition of mammalian target of rapamycin−S6K1−insulin receptor substrate-1 pathway, and induction of nicotinamide phosphoribosyltransferase−NAD+−sirtuin-1 cascade were remarkably impaired in AMPK-α2−/− mice. CR serum increased stability of AMPK-α2 protein via inhibiting the X chromosome-linked ubiquitin-specific protease 9–mediated ubiquitylation of AMPK-α2. Our results suggest that AMPK may be modulated by CR in a ubiquitylation-dependent manner and acts as a chief dictator for the insulin-sensitizing effects of CR in skeletal muscle.
Autophagy | 2014
Pei Wang; Tian-Ying Xu; Kai Wei; Yun-Feng Guan; Xia Wang; Hui Xu; Ding-Feng Su; Gang Pei; Chao-Yu Miao
Autophagy, a highly conserved process conferring cytoprotection against stress, contributes to the progression of cerebral ischemia. β-arrestins are multifunctional proteins that mediate receptor desensitization and serve as important signaling scaffolds involved in numerous physiopathological processes. Here, we show that both ARRB1 (arrestin, β 1) and ARRB2 (arrestin, β 2) were upregulated by cerebral ischemic stress. Knockout of Arrb1, but not Arrb2, aggravated the mortality, brain infarction, and neurological deficit in a mouse model of cerebral ischemia. Accordingly, Arrb1-deficient neurons exhibited enhanced cell injury upon oxygen-glucose deprivation (OGD), an in vitro model of ischemia. Deletion of Arrb1 did not affect the cerebral ischemia-induced inflammation, oxidative stress, and nicotinamide phosphoribosyltransferase upregulation, but markedly suppressed autophagy and induced neuronal apoptosis/necrosis in vivo and in vitro. Additionally, we found that ARRB1 interacted with BECN1/Beclin 1 and PIK3C3/Vps34, 2 major components of the BECN1 autophagic core complex, under the OGD condition but not normal conditions in neurons. Finally, deletion of Arrb1 impaired the interaction between BECN1 and PIK3C3, which is a critical event for autophagosome formation upon ischemic stress, and markedly reduced the kinase activity of PIK3C3. These findings reveal a neuroprotective role for ARRB1, in the context of cerebral ischemia, centered on the regulation of BECN1-dependent autophagosome formation.
Shock | 2004
Fu-Ming Shen; Yun-Feng Guan; He-hui Xie; Ding-feng Su
Lipopolysaccharide (LPS) mimics many of the effects of septic shock. LPS-induced death has been attributed to systemic hypotension, hyporeactiveness to vasoconstrictors, metabolic acidosis, and organ damage. However, there is no research directed to the involvement of the baroreflex sensitivity (BRS) in LPS-induced death. The purpose of this study was to evaluate the effect of BRS on the survival time after lethal LPS challenge. Four groups of rats were used. Each rat received an equivalent dose of intravenous LPS (50 mg/kg). It was found that the anesthetized sinoaortic-denervated (SAD) rats (representative of the lowest BRS, BRS = 0.022 ± 0.015 ms/mmHg) survived the shortest time (36 ± 11.1 min). The conscious SAD rats (BRS = 0.198 ± 0.035 ms/mmHg) and the anesthetized sham-operated rats (BRS = 0.304 ± 0.072 ms/mmHg) were alive a relatively long time (101 ± 11.5 min and 110 ± 12.4 min, respectively). The conscious sham-operated rats (BRS = 0.943 ± 0.097 ms/mmHg) survived the longest time (148 ± 6.5 min). These results demonstrated that arterial baroreflex function determined the survival time in the LPS-induced lethal shock.
Journals of Gerontology Series A-biological Sciences and Medical Sciences | 2014
Jie Song; Sen‐Fang Ke; Can-Can Zhou; Sai-Long Zhang; Yun-Feng Guan; Tian-Ying Xu; Chun-Quan Sheng; Pei Wang; Chao-Yu Miao
Calorie restriction (CR) is one of the most reproducible treatments for weight loss and slowing aging. However, how CR induces these metabolic alterations is not fully understood. In this work, we studied whether nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme for nicotinamide adenine dinucleotide biosynthesis, plays a role in CR-induced beneficial metabolic effects using a specific inhibitor of NAMPT (FK866). CR upregulated NAMPT mRNA and protein levels in rat skeletal muscle and white adipose tissue. Inhibition of NAMPT activity by FK866 in rats did not affect the SIRT1 upregulation by CR but suppressed the CR-induced SIRT1 activity and deacetylation of Forkhead box protein O1/peroxisome proliferator-activated receptor γ coactivator-1α. Inhibition of NAMPT activity by FK866 also attenuated the CR-induced SIRT3 activity, evidenced by deacetylation of superoxide dismutase-2. Furthermore, FK866 not only weakened the CR-induced decrease of oxidative stress (dichlorofluorescin signal, superoxide , and malondialdehyde levels), but also greatly attenuated the CR-induced improvements of antioxidative activity (total superoxide dismutase, glutathione, and glutathione/oxidized glutathione ratio) and mitochondrial biogenesis (mRNA levels of nuclear respiratory factor 1, cytochrome c oxidase IV, peroxisome proliferator-activated receptor-γ coactivator-1α, and transcription factor A, mitochondrial and citrate synthase activity). At last, FK866 blocked the CR-induced insulin sensitizing, Akt signaling activation, and endothelial nitric oxide synthase phosphorylation. Collectively, our data provide the first evidence that the CR-induced beneficial effects in oxidative stress, mitochondrial biogenesis, and metabolic adaptation require NAMPT.
Stroke | 2015
Yan Zhao; Yun-Feng Guan; Xiao-Ming Zhou; Guo-Qiang Li; Zhi-Yong Li; Can-Can Zhou; Pei Wang; Chao-Yu Miao
Background and Purpose— Nicotinamide adenine dinucleotide (NAD) is a ubiquitous fundamental metabolite. Nicotinamide phosphoribosyltransferase (Nampt) is the rate-limiting enzyme for mammalian NAD salvage synthesis and has been shown to protect against acute ischemic stroke. In this study, we investigated the role of Nampt–NAD cascade in brain regeneration after ischemic stroke. Methods— Nampt transgenic (Nampt-Tg) mice and H247A mutant enzymatic-dead Nampt transgenic (&Dgr;Nampt-Tg) mice were subjected with experimental cerebral ischemia by middle cerebral artery occlusion. Activation of neural stem cells, neurogenesis, and neurological function recovery were measured. Besides, nicotinamide mononucleotide and NAD, two chemical enzymatic product of Nampt, were administrated in vivo and in vitro. Results— Compared with wild-type mice, Nampt-Tg mice showed enhanced number of neural stem cells, improved neural functional recovery, increased survival rate, and accelerated body weight gain after middle cerebral artery occlusion, which were not observed in &Dgr;Nampt-Tg mice. A delayed nicotinamide mononucleotide administration for 7 days with the first dose at 12 hours post middle cerebral artery occlusion did not protect acute brain infarction and neuronal deficit; however, it still improved postischemic regenerative neurogenesis. Nicotinamide mononucleotide and NAD+ promoted proliferation and differentiation of neural stem cells in vitro. Knockdown of NAD-dependent deacetylase sirtuin 1 (SIRT1) and SIRT2 inhibited the progrowth action of Nampt–NAD axis, whereas knockdown of SIRT1, SIRT2, and SIRT6 compromised the prodifferentiation effect of Nampt–NAD axis. Conclusions— Our data demonstrate that the Nampt–NAD cascade may act as a centralizing switch in postischemic regeneration through controlling different sirtuins and therefore represent a promising therapeutic target for long-term recovery of ischemic stroke.
British Journal of Pharmacology | 2016
Can-Can Zhou; Xi Yang; Xia Hua; Jian Liu; Mao‐Bing Fan; Guo-Qiang Li; Jie Song; Tian-Ying Xu; Zhi-Yong Li; Yun-Feng Guan; Pei Wang; Chao-Yu Miao
Ageing is an important risk factor of non‐alcoholic fatty liver disease (NAFLD). Here, we investigated whether the deficiency of nicotinamide adenine dinucleotide (NAD+), a ubiquitous coenzyme, links ageing with NAFLD.
CNS Neuroscience & Therapeutics | 2014
Yan Zhao; Xin-Zhu Liu; Wei-Wei Tian; Yun-Feng Guan; Pei Wang; Chao-Yu Miao
Visfatin, a novel adipokine, is predominantly produced by visceral adipose tissue and exists in intracellular and extracellular compartments. The intracellular form of visfatin is proved to be nicotinamide phosphoribosyltransferase (NAMPT) and exhibits neuroprotection through maintaining intracellular NAD+ pool. However, whether extracellular form of visfatin has NAMPT activity and the effect of extracellular visfatin in cerebral ischemia are unknown.