Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yun Feng He is active.

Publication


Featured researches published by Yun Feng He.


Chemosphere | 2003

The role of citric acid on the phytoremediation of heavy metal contaminated soil.

Yingxu Chen; Qi Lin; Yongqing Luo; Yun Feng He; S.J Zhen; Y.L Yu; G.M. Tian; M.H. Wong

Adsorption and hydroponics experiments were conducted to study the role of citric acid on the phytoremediation of heavy metal contaminated soil. The results show that addition of citric acid decreased the adsorption of both lead and cadmium, such an effect was bigger for cadmium than for lead. The decrease in the adsorption of Pb and Cd was mainly due to a decrease of pH in the presence of citric acid. The presence of citric acid could alleviate the toxicity of Pb and Cd to radish, and stimulate their transportation from root to shoot. The studies of heavy metal forms using sequential extraction demonstrated that lead was mainly existed as FHAC (a lower bioavailable form) in the root, while F(HCl) was the dominant form in the leaf. The addition of citric acid to the soil changed the concentration and relative abundance of all the forms. The detoxifying effect of citric acid to Pb in shoots might result from the transformation of higher toxic forms into lower toxic forms. Cadmium was mainly present as F(NaCl), therefore, it had higher toxicity than lead. The addition of citric acid increased the abundance of F(H2O) + F(NaCl), indicating that citric acid treatment could transform cadmium into more transportable forms.


Plant Physiology | 2007

Iron deficiency-induced secretion of phenolics facilitates the reutilization of root apoplastic iron in red clover

Chong Wei Jin; Guang Yi You; Yun Feng He; Caixian Tang; Ping Wu; Shao Jian Zheng

Phenolic compounds are frequently reported to be the main components of root exudates in response to iron (Fe) deficiency in Strategy I plants, but relatively little is known about their function. Here, we show that removal of secreted phenolics from the root-bathing solution almost completely inhibited the reutilization of apoplastic Fe in roots of red clover (Trifolium pratense). This resulted in much lower levels of shoot Fe and significantly higher root Fe compared with control and also resulted in leaf chlorosis, suggesting this approach stimulated Fe deficiency. This was supported by the observation that phenolic removal significantly enhanced root ferric chelate reductase activity, which is normally induced by plant Fe deficiency. Furthermore, root proton extrusion, which also is normally increased during Fe deficiency, was found to be higher in plants exposed to the phenolic removal treatment too. These results indicate that Fe deficiency-induced phenolics secretion plays an important role in the reutilization of root apoplastic Fe, and this reutilization is not mediated by proton extrusion or the root ferric chelate reductase. In vitro studies with extracted root cell walls further demonstrate that excreted phenolics efficiently desorbed a significant amount of Fe from cell walls, indicating a direct involvement of phenolics in Fe remobilization. All of these results constitute the first direct experimental evidence, to our knowledge, that Fe deficiency-induced secretion of phenolics by the roots of a dicot species improves plant Fe nutrition by enhancing reutilization of apoplastic Fe, thereby improving Fe nutrition in the shoot.


Plant Physiology | 2005

Immobilization of Aluminum with Phosphorus in Roots Is Associated with High Aluminum Resistance in Buckwheat

Shao Jian Zheng; Jian Li Yang; Yun Feng He; Xue Hui Yu; Lei Zhang; Jiang Feng You; Ren Fang Shen; Hideaki Matsumoto

Oxalic acid secretion from roots is considered to be an important mechanism for aluminum (Al) resistance in buckwheat (Fygopyrum esculentum Moench). Nonetheless, only a single Al-resistant buckwheat cultivar was used to investigate the significance of oxalic acid in detoxifying Al. In this study, we investigated two buckwheat cultivars, Jiangxi (Al resistant) and Shanxi (Al sensitive), which showed significant variation in their resistance to Al stress. In the presence of 0 to 100 μm Al, the inhibition of root elongation was greater in Shanxi than that in Jiangxi, and the Al content of root apices (0–10 mm) was much lower in Jiangxi. However, the dependence of oxalic acid secretion on external Al concentration and the time course for secretion were similar in both cultivars. Furthermore, the variation in Al-induced oxalic acid efflux along the root was similar, showing a 10-fold greater efflux from the apical 0- to 5-mm region than from the 5- to 10-mm region. These results suggest that both Shanxi and Jiangxi possess an equal capacity for Al-dependent oxalic acid secretion. Another two potential Al resistance mechanisms, i.e. Al-induced alkalinization of rhizosphere pH and root inorganic phosphate release, were also not involved in their differential Al resistance. However, after longer treatments in Al (10 d), the concentrations of phosphorus and Al in the roots of the Al-resistant cultivar Jiangxi were significantly higher than those in Shanxi. Furthermore, more Al was localized in the cell walls of the resistant cultivar. All these results suggest that while Al-dependent oxalic acid secretion might contribute to the overall high resistance to Al stress of buckwheat, this response cannot explain the variation in tolerance between these two cultivars. We present evidence suggesting the greater Al resistance in buckwheat is further related to the immobilization and detoxification of Al by phosphorus in the root tissues.


Chemosphere | 2003

Rapid degradation of butachlor in wheat rhizosphere soil

Y.L Yu; Yingxu Chen; Yongqing Luo; Xue-Bo Pan; Yun Feng He; M.H. Wong

The degradative characteristics of butachlor in non-rhizosphere, wheat rhizosphere, and inoculated rhizosphere soils were measured. The rate constants for the degradation of butachlor in non-rhizosphere, rhizosphere, and inoculated rhizosphere soils were measured to be 0.0385, 0.0902, 0.1091 at 1 mg/kg, 0.0348, 0.0629, 0.2355 at 10 mg/kg, and 0.0299, 0.0386, 0.0642 at 100 mg/kg, respectively. The corresponding half-lives for butachlor in the soils were calculated to be 18.0, 7.7, 6.3 days at 1 mg/kg, 19.9, 11.0, 2.9 days at 10 mg/kg, and 23.2, 18.0, 10.8 days at 100 mg/kg, respectively. The experimental results show that the degradation of butachlor can be enhanced greatly in wheat rhizosphere, and especially in the rhizosphere inoculated with the bacterial community designated HD which is capable of degrading butachlor. It could be concluded that rhizosphere soil inoculated with microorganisms-degrading target herbicides is a useful pathway to achieve rapid degradation of the herbicides in soil.


Chemosphere | 2003

Physiological mechanism of plant roots exposed to cadmium

Yingxu Chen; Yun Feng He; Yongqing Luo; Y.L Yu; Qi Lin; M.H. Wong

Physiological experiments on plant roots exposed to cadmium were conducted on carrot and radish using a liquid culture and a pot experiment with a series of cadmium applications. Activities of four enzymes (catalase, peroxidase, polyphenol oxidase, superoxide dismutase), and concentrations of free proline and malonaldehyde in the roots of both plants were investigated. Results showed that the germination rate and growth of roots of both plants were inhibited at the concentration of 20 mg Cd/l, and the inhibition was increased with the increasing concentrations of cadmium, both in the liquid culture and in the pot experiment; activities of the four enzymes declined similarly in both species. The concentration of proline in roots reached the maximum when the application of cadmium was at the level of 20 mg/l in the liquid culture (or 20 mg/kg in soil), and then it declined slowly with the increasing concentration of cadmium. However, the reverse trend was observed for the concentration of malonaldehyde. All of bio-indicators measured here was quite sensitive to the addition of cadmium.


Chemosphere | 2003

Effect of cadmium on nodulation and N2-fixation of soybean in contaminated soils

Yongfu Chen; Yun Feng He; Yanan Yang; Y.L Yu; Shao Jian Zheng; G.M. Tian; Y.M. Luo; M.H. Wong

The effects of cadmium stress on nodulation, N2-fixation capabilities of the root nodule, the change in ultrastructure of the root nodule, soybean growth, and the distribution of cadmium in plants were studied. The results obtained show that the nodulation of soybean roots was greatly inhibited by the addition of Cd, especially at the addition level of 10 and 20 mg kg(-1) soil. The inhibition of plant growth, especially the root growth, increased as the cadmium concentration increased, with deleterious effects observed for the roots. The weight ratio of soybean root/leaf decreased as the Cd concentration increased, which might explain the reason for nodulation decreases. The results also indicate that N2-fixation of root nodule was stimulated to some extent at the low levels of Cd addition, but decreased sharply with further increase of the Cd concentration. High Cd levels were also associated with changes in the ultrastructure of root nodule, in which the effective N2-fixing area was reduced and the N2-fixing cells in the area also reduced. In addition, the results also reveal that the content of Cd in different parts of the plants was as follows: roots >> stems > seeds, indicating that the accumulation of Cd by roots is much larger than that by any other part of the soybean plant, and might cause deleterious effects to root systems.


Journal of Plant Nutrition | 2005

Genotypic Differences Among Plant Species in Response to Aluminum Stress

Jian Li Yang; Shao Jian Zheng; Yun Feng He; Caixian Tang; Gen Di Zhou

Abstract Genotypic differences in aluminum (Al) resistance in rye (Secale cereale L.), triticale (X Triticosecale Wittmack), wheat (Triticum aestivum L.), and buckwheat (Fygopyrum esculentum Moench) were examined using a compartmental hydroponic system. Four-day-old seedlings were grown for 24 h in 0.5 mM CaCl2 (pH 4.5) containing 0 or 50 μM Al. Relative root elongation (RRE) at 50 μM Al. (as a percentage of that at 0 Al) was used as the index of Al resistance. On average, rye exhibited the highest Al resistance, followed by buckwheat, triticale, and wheat. However, triticale displayed the greatest genotypic differences. Al content in the root tips of triticale breeding lines negatively correlated with RRE (r = 0.5, P < 0.01), implying that the Al exclusion mechanism contributed to Al resistance. Furthermore, high Al resistance in buckwheat correlated well with the growth habitats of buckwheat, indicating that adaptation mechanisms giving good Al resistance have evolved in buckwheat. All of these results suggested that it is possible to obtain greater Al resistance in plants by screening current existing cultivars. The selection of new cultivars with increased Al resistance and sensitivity will provide important material for further studies exploring Al phytotoxic and resistant mechanisms.


Plant and Soil | 2005

A copper-deficiency-induced root reductase is different from the iron-deficiency-induced one in red clover (Trifolium pratense L.)

Shao Jian Zheng; Yun Feng He; Yusuke Arakawa; Yoshikuni Masaoka; Caixian Tang

There is increasing evidence that Cu deficiency can induce root reductase activity, but the ecological and physiological significance of this is unknown. This study compared the characteristics of root reductase activity induced by Cu deficiency with those induced by Fe deficiency in red clover (Trifolium pratenseL. cv. Kenland), a Fe-efficient plant. Effects of other nutritional stresses were also investigated for comparison. Compared with the effect of Fe deficiency, Cu deficiency induced only a moderate level of root reductase activity, while other nutrient stresses had no effect, or even inhibited the root reductases activity, especially in the case of Zn deficiency. Compared with Fe deficiency-induced Fe(III)-chelate reductase, Cu deficiency-induced reductase displayed a different pattern of induction. The activity of the Cu deficiency-induced reductase in intact plants increased with time; in decapitated plants it showed a distinct peak at a later stage of the treatment. The Fe concentration in the roots was significantly increased under Cu deficiency. Furthermore, the reductase activity was presented in the entire root system, contrary to what was observed for the Fe-deficiency-induced reductase activity, which was confined to the root apex. Cu deficiency did not increase proton extrusion from the roots, even when growth was significantly affected. The present results suggest that in red clover Cu deficiency induces a root reductase that is different from the reductase induced by Fe deficiency.


Chemosphere | 2005

Lead contamination in tea garden soils and factors affecting its bioavailability.

Chong Wei Jin; Shao Jian Zheng; Yun Feng He; Gen Di Zhou; Zhong Xian Zhou


Plant Cell and Environment | 2006

Mechanisms of microbially enhanced fe acquisition in red clover (Trifolium pratense L.)

Chong Wei Jin; Yun Feng He; Caixian Tang; Ping Wu; Shao Jian Zheng

Collaboration


Dive into the Yun Feng He's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Y.L Yu

Zhejiang University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M.H. Wong

Hong Kong Baptist University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gen Di Zhou

Hangzhou Normal University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge