Yun Hua
University of Pittsburgh
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yun Hua.
Journal of Biomolecular Screening | 2010
Drew D. Dudgeon; Sunita Shinde; Yun Hua; Tong Ying Shun; John S. Lazo; Christopher J. Strock; Kenneth A. Giuliano; D. Lansing Taylor; Patricia A. Johnston; Paul A. Johnston
In recent years, advances in structure-based drug design and the development of an impressive variety of high-throughput screening (HTS) assay formats have yielded an expanding list of protein-protein interaction inhibitors. Despite these advances, protein-protein interaction targets are still widely considered difficult to disrupt with small molecules. The authors present here the results from screening 220,017 compounds from the National Institute of Health’s small-molecule library in a novel p53-hDM2 protein-protein interaction biosensor (PPIB) assay. The p53-hDM2 positional biosensor performed robustly and reproducibly throughout the high-content screening (HCS) campaign, and analysis of the multiparameter data from images of the 3 fluorescent channels enabled the authors to identify and eliminate compounds that were cytotoxic or fluorescent artifacts. The HCS campaign yielded 3 structurally related methylbenzo-naphthyridin-5-amine (MBNA) hits with IC50s between 30 and 50 µM in the p53-hDM2 PPIB. In HCT116 cells with wild-type (WT) p53, the MBNAs enhanced p53 protein levels, increased the expression of p53 target genes, caused a cell cycle arrest in G1, induced apoptosis, and inhibited cell proliferation with an IC50 ~4 µM. The prototype disruptor of p53-hDM2 interactions Nutlin-3 was more potent than the MBNAs in the p53-hDM2 PPIB assay but produced equivalent biological results in HCT116 cells WT for p53. Unlike Nutlin-3, however, MBNAs also increased the percentage of apoptosis in p53 null cells and exhibited similar potencies for growth inhibition in isogenic cell lines null for p53 or p21. Neither the MBNAs nor Nutin-3 caused cell cycle arrest in p53 null HCT116 cells. Despite the relatively modest size of the screening library, the combination of a novel p53-hDM2 PPIB assay together with an automated imaging HCS platform and image analysis methods enabled the discovery of a novel chemotype series that disrupts p53-hDM2 interactions in cells.
Assay and Drug Development Technologies | 2015
Paul A. Johnston; Malabika Sen; Yun Hua; Daniel P. Camarco; Tong Ying Shun; John S. Lazo; Gabriela Mustata Wilson; Lynn Resnick; Matthew G. LaPorte; Peter Wipf; Donna M. Huryn; Jennifer R. Grandis
Signal transducer and activator of transcription factor 3 (STAT3) is hyperactivated in head and neck squamous cell carcinomas (HNSCC). Cumulative evidence indicates that IL-6 production by HNSCC cells and/or stromal cells in the tumor microenvironment activates STAT3 and contributes to tumor progression and drug resistance. A library of 94,491 compounds from the Molecular Library Screening Center Network (MLSCN) was screened for the ability to inhibit interleukin-6 (IL-6)-induced pSTAT3 activation. For contractual reasons, the primary high-content screening (HCS) campaign was conducted over several months in 3 distinct phases; 1,068 (1.1%) primary HCS actives remained after cytotoxic or fluorescent outliers were eliminated. One thousand one hundred eighty-seven compounds were cherry-picked for confirmation; actives identified in the primary HCS and compounds selected by a structural similarity search of the remaining MLSCN library using hits identified in phases I and II of the screen. Actives were confirmed in pSTAT3 IC50 assays, and an IFNγ-induced pSTAT1 activation assay was used to prioritize selective inhibitors of STAT3 activation that would not inhibit STAT1 tumor suppressor functions. Two hundred three concentration-dependent inhibitors of IL-6-induced pSTAT3 activation were identified and 89 of these also produced IC50s against IFN-γ-induced pSTAT1 activation. Forty-nine compounds met our hit criteria: they reproducibly inhibited IL-6-induced pSTAT3 activation by ≥70% at 20 μM; their pSTAT3 activation IC50s were ≤25 μM; they were ≥2-fold selective for pSTAT3 inhibition over pSTAT1 inhibition; a cross target query of PubChem indicated that they were not biologically promiscuous; and they were ≥90% pure. Twenty-six chemically tractable hits that passed filters for nuisance compounds and had acceptable drug-like and ADME-Tox properties by computational evaluation were purchased for characterization. The hit structures were distributed among 5 clusters and 8 singletons. Twenty-four compounds inhibited IL-6-induced pSTAT3 activation with IC50s ≤20 μM and 13 were ≥3-fold selective versus inhibition of pSTAT1 activation. Eighteen hits inhibited the growth of HNSCC cell lines with average IC50s ≤ 20 μM. Four chemical series were progressed into lead optimization: the guanidinoquinazolines, the triazolothiadiazines, the amino alcohols, and an oxazole-piperazine singleton.
Assay and Drug Development Technologies | 2012
Paul A. Johnston; Sunita Shinde; Yun Hua; Tong Ying Shun; John S. Lazo; Billy W. Day
Rapid ligand-induced trafficking of glucocorticoid nuclear hormone receptor (GR) from the cytoplasm to the nucleus is an extensively studied model for intracellular retrograde cargo transport employed in constructive morphogenesis and many other cellular functions. Unfortunately, potent and selective small-molecule disruptors of this process are lacking, which has restricted pharmacological investigations. We describe here the development and validation of a 384-well high-content screening (HCS) assay to identify inhibitors of the rapid ligand-induced retrograde translocation of cytoplasmic glucocorticoid nuclear hormone receptor green fluorescent fusion protein (GR-GFP) into the nuclei of 3617.4 mouse mammary adenocarcinoma cells. We selected 3617.4 cells, because they express GR-GFP under the control of a tetracycline (Tet)-repressible promoter and are exceptionally amenable to image acquisition and analysis procedures. Initially, we investigated the time-dependent expression of GR-GFP in 3617.4 cells under Tet-on and Tet-off control to determine the optimal conditions to measure dexamethasone (Dex)-induced GR-GFP nuclear translocation on the ArrayScan-VTI automated imaging platform. We then miniaturized the assay into a 384-well format and validated the performance of the GR-GFP nuclear translocation HCS assay in our 3-day assay signal window and dimethylsulfoxide validation tests. The molecular chaperone heat shock protein 90 (Hsp90) plays an essential role in the regulation of GR steroid binding affinity and ligand-induced retrograde trafficking to the nucleus. We verified that the GR-GFP HCS assay captured the concentration-dependent inhibition of GR-GFP nuclear translocation by 17-AAG, a benzoquinone ansamycin that selectively blocks the binding and hydrolysis of ATP by Hsp90. We screened the 1280 compound library of pharmacologically active compounds set in the Dex-induced GR-GFP nuclear translocation assay and used the multi-parameter HCS data to eliminate cytotoxic compounds and fluorescent outliers. We identified five qualified hits that inhibited the rapid retrograde trafficking of GR-GFP in a concentration-dependent manner: Bay 11-7085, 4-phenyl-3-furoxancarbonitrile, parthenolide, apomorphine, and 6-nitroso-1,2-benzopyrone. The data presented here demonstrate that the GR-GFP HCS assay provides an effective phenotypic screen and support the proposition that screening a larger library of diversity compounds will yield novel small-molecule probes that will enable the further exploration of intracellular retrograde transport of cargo along microtubules, a process which is essential to the morphogenesis and function of all cells.
Bioorganic & Medicinal Chemistry Letters | 2016
Matthew G. LaPorte; Zhuzhu Wang; Raffaele Colombo; Atefeh Garzan; Vsevolod A. Peshkov; Mary Liang; Paul A. Johnston; Mark E. Schurdak; Malabika Sen; Daniel P. Camarco; Yun Hua; Netanya I. Pollock; John S. Lazo; Jennifer R. Grandis; Peter Wipf; Donna M. Huryn
Structure-activity relationship studies of a 1,2,4-triazolo-[3,4-b]thiadiazine scaffold, identified in an HTS campaign for selective STAT3 pathway inhibitors, determined that a pyrazole group and specific aryl substitution on the thiadiazine were necessary for activity. Improvements in potency and metabolic stability were accomplished by the introduction of an α-methyl group on the thiadiazine. Optimized compounds exhibited anti-proliferative activity, reduction of phosphorylated STAT3 levels and effects on STAT3 target genes. These compounds represent a starting point for further drug discovery efforts targeting the STAT3 pathway.
Bioorganic & Medicinal Chemistry Letters | 2014
Matthew G. LaPorte; Dimas José da Paz Lima; Feng Zhang; Malabika Sen; Jennifer R. Grandis; Daniel P. Camarco; Yun Hua; Paul A. Johnston; John S. Lazo; Lynn Resnick; Peter Wipf; Donna M. Huryn
Synthesis and SAR investigation of 2-guanidinoquinazolines, initially identified in a high content screen for selective STAT3 pathway inhibitors, led to a more potent analog (11c) that demonstrated improved anti-proliferative activity against a panel of HNSCC cell lines.
Assay and Drug Development Technologies | 2016
Paul A. Johnston; Minh M. Nguyen; Javid A. Dar; Junkui Ai; Yujuan Wang; Khalid Z. Masoodi; Tongying Shun; Sunita Shinde; Daniel P. Camarco; Yun Hua; Donna M. Huryn; Gabriela Mustata Wilson; John S. Lazo; Joel B. Nelson; Peter Wipf; Zhou Wang
Patients with castration-resistant prostate cancer (CRPC) can be treated with abiraterone, a potent inhibitor of androgen synthesis, or enzalutamide, a second-generation androgen receptor (AR) antagonist, both targeting AR signaling. However, most patients relapse after several months of therapy and a majority of patients with relapsed CRPC tumors express the AR target gene prostate-specific antigen (PSA), suggesting that AR signaling is reactivated and can be targeted again to inhibit the relapsed tumors. Novel small molecules capable of inhibiting AR function may lead to urgently needed therapies for patients resistant to abiraterone, enzalutamide, and/or other previously approved antiandrogen therapies. Here, we describe a high-throughput high-content screening (HCS) campaign to identify small-molecule inhibitors of AR nuclear localization in the C4-2 CRPC cell line stably transfected with GFP-AR-GFP (2GFP-AR). The implementation of this HCS assay to screen a National Institutes of Health library of 219,055 compounds led to the discovery of 3 small molecules capable of inhibiting AR nuclear localization and function in C4-2 cells, demonstrating the feasibility of using this cell-based phenotypic assay to identify small molecules targeting the subcellular localization of AR. Furthermore, the three hit compounds provide opportunities to develop novel AR drugs with potential for therapeutic intervention in CRPC patients who have relapsed after treatment with antiandrogens, such as abiraterone and/or enzalutamide.
Archive | 2018
Paul A. Johnston; Malabika Sen; Yun Hua; Daniel P. Camarco; Tong Ying Shun; John S. Lazo; Jennifer R. Grandis
In the canonical STAT3 signaling pathway, IL-6 receptor engagement leads to the recruitment of latent STAT3 to the activated IL-6 complex and the associated Janus kinase (JAK) phosphorylates STAT3 at Y705. pSTAT3-Y705 dimers traffic into the nucleus and bind to specific DNA response elements in the promoters of target genes to regulate their transcription. However, IL-6 receptor activation induces the phosphorylation of both the Y705 and S727 residues of STAT3, and S727 phosphorylation is required to achieve maximal STAT3 transcriptional activity. STAT3 continuously shuttles between the nucleus and cytoplasm and maintains a prominent nuclear presence that is independent of Y705 phosphorylation. The constitutive nuclear entry of un-phosphorylated STAT3 (U-STAT3) drives expression of a second round of genes by a mechanism distinct from that used by pSTAT3-Y705 dimers. The abnormally elevated levels of U-STAT3 produced by the constitutive activation of pSTAT3-Y705 observed in many tumors drive the expression of an additional set of pSTAT3-independent genes that contribute to tumorigenesis. In this chapter, we describe the HCS assay methods to measure IL-6-induced STAT3 signaling pathway activation in head and neck tumor cell lines as revealed by the expression and subcellular distribution of pSTAT3-Y705, pSTAT3-S727, and U-STAT3. Only the larger dynamic range provided by the pSTAT3-Y705 antibody would be robust and reproducible enough for screening.
Journal of Chemical Biology | 2017
Malabika Sen; Paul A. Johnston; Netanya I. Pollock; Kara A. DeGrave; Sonali Joyce; Maria L. Freilino; Yun Hua; Daniel P. Camarco; David Close; Donna M. Huryn; Peter Wipf; Jennifer R. Grandis
Studies indicate that elevated interleukin-6 (IL-6) levels engage IL6Rα-gp130 receptor complexes to activate signal transducer and activator of transcription 3 (STAT3) that is hyperactivated in many cancers including head and neck squamous cell carcinoma (HNSCC). Our previous HCS campaign identified several hits that selectively blocked IL-6-induced STAT3 activation. This study describes our investigation of the mechanism(s) of action of three of the four chemical series that progressed to lead activities: a triazolothiadiazine (864669), amino alcohol (856350), and an oxazole-piperazine (4248543). We demonstrated that all three blocked IL-6-induced upregulation of the cyclin D1 and Bcl-XL STAT3 target genes. None of the compounds exhibited direct binding interactions with STAT3 in surface plasmon resonance (SPR) binding assays; neither did they inhibit the recruitment and binding of a phospho-tyrosine-gp130 peptide to STAT3 in a fluorescence polarization assay. Furthermore, they exhibited little or no inhibition in a panel of 83 cancer-associated in vitro kinase profiling assays, including lack of inhibition of IL-6-induced Janus kinase (JAK 1, 2, and 3) activation. Further, 864669 and 4248543 selectively inhibited IL-6-induced STAT3 activation but not that induced by oncostatin M (OSM). The compounds 864669 and 4248543 abrogated IL-6-induced phosphorylation of the gp130 signaling subunit (phospho-gp130Y905) of the IL-6-receptor complex in HNSCC cell lines which generate docking sites for the SH2 domains of STAT3. Our data indicate that 864669 and 4248543 block IL-6-induced STAT activation by interfering with the recruitment, assembly, or activation of the hexamer-activated IL-6/IL-6Rα/gp130 signaling complex that occurs after IL-6 binding to IL-6Rα subunits.
Methods of Molecular Biology | 2015
Yun Hua; Christopher J. Strock; Paul A. Johnston
This chapter describes the implementation of the p53-hDM2 protein-protein interaction (PPI) biosensor (PPIB) HCS assay to identify disruptors of p53-hDM2 PPIs. Recombinant adenovirus expression constructs were generated bearing the individual p53-GFP and hDM2-RFP PPI partners. The N-terminal p53 transactivating domain that contains the binding site for hDM2 is expressed as a GFP fusion protein that is targeted and anchored in the nucleolus of infected cells by a nuclear localization (NLS) sequence. The p53-GFP biosensor is localized to the nucleolus to enhance and facilitate the image acquisition and analysis of the PPIs. The N-terminus of hDM2 encodes the domain for binding to the transactivating domain of p53, and is expressed as a RFP fusion protein that includes both an NLS and a nuclear export sequence (NES). In U-2 OS cells co-infected with both adenovirus constructs, the binding interactions between hDM2 and p53 result in both biosensors becoming co-localized within the nucleolus. Upon disruption of the p53-hDM2 PPIs, the p53-GFP biosensor remains in the nucleolus while the shuttling hDM2-RFP biosensor redistributes into the cytoplasm. p53-hDM2 PPIs are measured by acquiring fluorescent images of cells co-infected with both adenovirus biosensors on an automated HCS imaging platform and using an image analysis algorithm to quantify the relative distribution of the hDM2-RFP shuttling component of the biosensor between the cytoplasm and nuclear regions of compound treated cells.
Assay and Drug Development Technologies | 2014
Yun Hua; Tong Ying Shun; Christopher J. Strock; Paul A. Johnston