Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yun-Yan Xiang is active.

Publication


Featured researches published by Yun-Yan Xiang.


Nature Medicine | 2007

A GABAergic system in airway epithelium is essential for mucus overproduction in asthma

Yun-Yan Xiang; Shuhe Wang; Mingyao Liu; Jeremy A. Hirota; Jingxin Li; William Ju; Yijun Fan; Margaret M. Kelly; Bin Ye; Beverley A. Orser; Paul M. O'Byrne; Mark D. Inman; Xi Yang; Wei-Yang Lu

γ-Aminobutyric acid (GABA) is an important neurotransmitter that, through the subtype A GABA receptor (GABAAR), induces inhibition in the adult brain. Here we show that an excitatory, rather than inhibitory, GABAergic system exists in airway epithelial cells. Both GABAARs and the GABA synthetic enzyme glutamic acid decarboxylase (GAD) are expressed in pulmonary epithelial cells. Activation of GABAARs depolarized these cells. The expression of GAD in the cytosol and GABAARs in the apical membranes of airway epithelial cells increased markedly when mice were sensitized and then challenged with ovalbumin, an approach for inducing allergic asthmatic reactions. Similarly, GAD and GABAARs in airway epithelial cells of humans with asthma increased after allergen inhalation challenge. Intranasal application of selective GABAAR inhibitors suppressed the hyperplasia of goblet cells and the overproduction of mucus induced by ovalbumin or interleukin-13 in mice. These findings show that a previously unknown epithelial GABAergic system has an essential role in asthma.


Journal of Biological Chemistry | 2006

Versican G3 domain regulates neurite growth and synaptic transmission of hippocampal neurons by activation of epidermal growth factor receptor.

Yun-Yan Xiang; Haiheng Dong; Yudi Wan; Jingxin Li; Albert Yee; Burton B. Yang; Wei-Yang Lu

Versican is one of the major extracellular matrix (ECM) proteins in the brain. ECM molecules and their cleavage products critically regulate the growth and arborization of neurites, hence adjusting the formation of neural networks. Recent findings have revealed that peptide fragments containing the versican C terminus (G3 domain) are present in human brain astrocytoma. The present study demonstrated that a versican G3 domain enhanced cell attachment, neurite growth, and glutamate receptor-mediated currents in cultured embryonic hippocampal neurons. In addition, the G3 domain intensified dendritic spines, increased the clustering of both synaptophysin and the glutamate receptor subunit GluR2, and augmented excitatory synaptic activity. In contrast, a mutated G3 domain lacking the epidermal growth factor (EGF)-like repeats (G3ΔEGF) had little effect on neurite growth and glutamatergic function. Treating the neurons with the G3-conditioned medium rapidly increased the levels of phosphorylated EGF receptor (pEGFR) and phosphorylated extracellular signal-regulated kinase (pERK), indicating an activation of EGFR-mediated signaling pathways. Blockade of EGFR prevented the G3-induced ERK activation and suppressed the G3-provoked enhancement of neurite growth and glutamatergic function but failed to block the G3-mediated enhancement of cell attachment. These combined results indicate that the versican G3 domain regulates neuronal attachment, neurite outgrowth, and synaptic function of hippocampal neurons via EGFR-dependent and -independent signaling pathway(s). Our findings suggest a role for ECM proteolytic products in neural development and regeneration.


The Journal of Neuroscience | 2004

Excessive Expression of Acetylcholinesterase Impairs Glutamatergic Synaptogenesis in Hippocampal Neurons

Haiheng Dong; Yun-Yan Xiang; Noa Farchi; William Ju; Yaojiong Wu; Liwen Chen; Yutian Wang; Binyamin Hochner; Burton B. Yang; Hermona Soreq; Wei-Yang Lu

Acetylcholinesterase (AChE) exerts noncatalytic activities on neural cell differentiation, adhesion, and neuritogenesis independently of its catalytic function. The noncatalytic functions of AChE have been attributed to its peripheral anionic site (PAS)-mediated protein-protein interactions. Structurally, AChE is highly homologous to the extracellular domain of neuroligin, a postsynaptic transmembrane molecule that interacts with presynaptic β-neurexins, thus facilitating synaptic formation and maturation. Potential effects of AChE expression on synaptic transmission, however, remain unknown. Using electrophysiology, immunocytochemistry, and molecular biological approaches, this study investigated the role of AChE in the regulation of synaptic formation and functions. We found that AChE was highly expressed in cultured embryonic hippocampal neurons at early culture days, particularly in dendritic compartments including the growth cone. Subsequently, the expression level of AChE declined, whereas synaptic activity and synaptic proteins progressively increased. Chronic blockade of the PAS of AChE with specific inhibitors selectively impaired glutamatergic functions and excitatory synaptic structures independently of cholinergic activation, while inducing AChE overexpression. Moreover, the PAS blockade-induced glutamatergic impairments were associated with a depressed expression of β-neurexins and an accumulation of other synaptic proteins, including neuroligins, and were mostly preventable by antisense suppression of AChE expression. Our findings demonstrate that interference with the nonenzymatic features of AChE alters AChE expression, which impairs excitatory synaptic structure and functions.


PLOS ONE | 2011

GABA Coordinates with Insulin in Regulating Secretory Function in Pancreatic INS-1 β-Cells

Paul Bansal; Shuanglian Wang; Shenghao Liu; Yun-Yan Xiang; Wei-Yang Lu; Qinghua Wang

Pancreatic islet β-cells produce large amounts of γ-aminobutyric acid (GABA), which is co-released with insulin. GABA inhibits glucagon secretion by hyperpolarizing α-cells via type-A GABA receptors (GABAARs). We and others recently reported that islet β-cells also express GABAARs and that activation of GABAARs increases insulin release. Here we investigate the effects of insulin on the GABA-GABAAR system in the pancreatic INS-1 cells using perforated-patch recording. The results showed that GABA produces a rapid inward current and depolarizes INS-1 cells. However, pre-treatment of the cell with regular insulin (1 µM) suppressed the GABA-induced current (IGABA) by 43%. Zinc-free insulin also suppressed IGABA to the same extent of inhibition by regular insulin. The inhibition of IGABA occurs within 30 seconds after application of insulin. The insulin-induced inhibition of IGABA persisted in the presence of PI3-kinase inhibitor, but was abolished upon inhibition of ERK, indicating that insulin suppresses GABAARs through a mechanism that involves ERK activation. Radioimmunoassay revealed that the secretion of C-peptide was enhanced by GABA, which was blocked by pre-incubating the cells with picrotoxin (50 µM, p<0.01) and insulin (1 µM, p<0.01), respectively. Together, these data suggest that autocrine GABA, via activation of GABAARs, depolarizes the pancreatic β-cells and enhances insulin secretion. On the other hand, insulin down-regulates GABA-GABAAR signaling presenting a feedback mechanism for fine-tuning β-cell secretion.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2012

A novel role of intestine epithelial GABAergic signaling in regulating intestinal fluid secretion

Yan Li; Yun-Yan Xiang; Wei-Yang Lu; Chuanyong Liu; Jingxin Li

γ-Aminobutyric acid (GABA) is the primary inhibitory neurotransmitter in the central nervous system, and it is produced via the enzymatic activity of glutamic acid decarboxylase (GAD). GABA generates fast biological signaling through type A receptors (GABA(A)R), an anionic channel. Intriguingly, GABA is found in the jejunum epithelium of rats. The present study intended to determine whether a functional GABA signaling system exists in the intestinal epithelium and if so whether the GABA signaling regulates intestinal epithelial functions. RT-PCR, Western blot, and immunohistochemical assays of small intestinal tissues of various species were performed to determine the expression of GABA-signaling proteins in intestinal epithelial cells. Perforated patch-clamp recording was used to measure GABA-induced transmembrane current in the small intestine epithelial cell line IEC-18. The fluid weight-to-intestine length ratio was measured in mice that were treated with GABA(A)R agonist and antagonist. The effect of GABA(A)R antagonist on allergic diarrhea was examined using a mouse model. GABA, GAD, and GABA(A)R subunits were identified in small intestine epithelial cells of mice, rats, pigs, and humans. GABA(A)R agonist induced an inward current and depolarized IEC-18. Both GABA and the GABA(A)R agonist muscimol increased intestinal fluid secretion of rats. The increased intestinal secretion was largely decreased by the GABA(A)R antagonist picrotoxin or gabazine, but not by tetrodotoxin. The expression levels of GABA-signaling proteins were increased in the intestinal epithelium of mice that were sensitized and challenged with ovalbumin (OVA). The OVA-treated mice exhibited diarrhea, which was alleviated by oral administration of gabazine or picrotoxin. An endogenous autocrine GABAergic signaling exists in the mammalian intestinal epithelium, which upregulates intestinal fluid secretion. The intestinal GABAergic signaling becomes intensified in allergic diarrhea, and inhibition of this GABA-signal system alleviates the allergic diarrhea.


Clinical & Experimental Allergy | 2010

The role of interleukin-4Rα in the induction of glutamic acid decarboxylase in airway epithelium following acute house dust mite exposure

Jeremy A. Hirota; Alison L. Budelsky; D. Smith; B. Lipsky; R. Ellis; Yun-Yan Xiang; Wei-Yang Lu; M. D. Inman

Background Asthma is a disease characterized by airway inflammation, remodelling and dysfunction. Airway inflammation contributes to remodelling, a term that is used to describe structural changes including goblet cell metaplasia (GCM), matrix deposition, and smooth muscle hyperplasia/hypertrophy. GCM has been implicated in asthma mortality by contributing to mucus plugs and leading to asphyxiation. In animal models, this process is highly dependent on IL‐13. Recently, we have described an IL‐13‐dependent up‐regulation of a GABAergic signalling system in airway epithelium that contributes to GCM. The mechanism by which IL‐13 up‐regulates GABA signalling in airway epithelium is unknown.


European Respiratory Journal | 2008

Nonsteroidal anti-inflammatory drugs upregulate function of wild-type and mutant CFTR

Jingxin Li; Yun-Yan Xiang; Lin Ye; Lap-Chee Tsui; John F. MacDonald; Jim Hu; Wei-Yang Lu

Small-scale clinical trials show that treatment of cystic fibrosis (CF) patients with ibuprofen, a nonsteroidal anti-inflammatory drug, improves the symptoms of CF and slows down the decline of lung function. Paradoxically, ibuprofen inhibits ligand-stimulated CF transmembrance conductance regulator (CFTR) activity. The aim of the present study was to investigate the effects of ibuprofen on CFTR function under different conditions. Patch-clamp recordings were performed in two lines of human airway epithelial cells: IB3-8-3-7 cells, which express wild-type CFTR; and IB3-1 cells, which express the variant CFTR with deletion of phenylalanine 580 (ΔF580CFTR). Addition of ibuprofen to the extracellular solution caused a rapid inhibition of CFTR activity in IB3-8-3-7 cells in the presence of a high intracellular concentration of cAMP, whereas ibuprofen enhanced the CFTR conductance at low levels of cAMP. Introducing ibuprofen into the interior of cells occluded the enhancing effect of ibuprofen. Notably, the variant CFTR-mediated conductance was detected in IB3-1 cells treated with myoinositol and was enhanced by ibuprofen at endogenous levels of cAMP. In summary, nonsteroidal anti-inflammatory drugs increase the function of both wild-type cystic fibrosis transmembrane conductance regulator and the phenylalanine 580 deletion in cultured human airway epithelial cells at endogenous levels of cAMP.


Neurodegenerative Diseases | 2007

Peripheral Site Acetylcholinesterase Blockade Induces RACK1-Associated Neuronal Remodeling

Noa Farchi; Keren Ofek; Erez Podoly; Haiheng Dong; Yun-Yan Xiang; Sophia Diamant; Oded Livnah; Jingxin Li; Binyamin Hochner; Wei-Yang Lu; Hermona Soreq

Background: Peripheral anionic site (PAS) blockade of acetylcholinesterase (AChE) notably affects neuronal activity and cyto-architecture, however, the mechanism(s) involved are incompletely understood. Objective: We wished to specify the PAS extracellular effects on specific AChE mRNA splice variants, delineate the consequent cellular remodeling events, and explore the inhibitory effects on interchanging RACK1 interactions. Methods: We exposed rat hippocampal cultured neurons to BW284C51, the peripheral anionic site inhibitor of AChE, and to the non-selective AChE active site inhibitor, physostigmine for studying the neuronal remodeling of AChE mRNA expression and trafficking. Results: BW284C51 induced overexpression of both AChE splice variants, yet promoted neuritic translocation of the normally rare AChE-R, and retraction of AChE-S mRNA in an antisense-suppressible manner. BW284C51 further caused modest decreases in the expression of the scaffold protein RACK1 (receptor for activated protein kinase βII), followed by drastic neurite retraction of both RACK1 and the AChE homologue neuroligin1, but not the tubulin-associated MAP2 protein. Accompanying BW284C51 effects involved decreases in the Fyn kinase and membrane insertion of the glutamate receptor NR2B variant and impaired glutamatergic activities of treated cells. Intriguingly, molecular modeling suggested that direct, non-catalytic competition with Fyn binding by the RACK1-interacting AChE-R variant may be involved. Conclusions: Our findings highlight complex neuronal AChE-R/RACK1 interactions and are compatible with the hypothesis that peripheral site AChE inhibitors induce RACK1-mediated neuronal remodeling, promoting suppressed glutamatergic neurotransmission.


Anesthesiology | 2013

Isoflurane regulates atypical type-A γ-aminobutyric acid receptors in alveolar type II epithelial cells.

Yun-Yan Xiang; Xuanmao Chen; Jingxin Li; Shuanglian Wang; Gil Faclier; John F. MacDonald; James C. Hogg; Beverley A. Orser; Wei-Yang Lu

Background:Volatile anesthetics act primarily through upregulating the activity of &ggr;-aminobutyric acid type A (GABAA) receptors. They also exhibit antiinflammatory actions in the lung. Rodent alveolar type II (ATII) epithelial cells express GABAA receptors and the inflammatory factor cyclooxygenase-2 (COX-2). The goal of this study was to determine whether human ATII cells also express GABAA receptors and whether volatile anesthetics upregulate GABAA receptor activity, thereby reducing the expression of COX-2 in ATII cells. Methods:The expression of GABAA receptor subunits and COX-2 in ATII cells of human lung tissue and in the human ATII cell line A549 was studied with immunostaining and immunoblot analyses. Patch clamp recordings were used to study the functional and pharmacological properties of GABAA receptors in cultured A549 cells. Results:ATII cells in human lungs and cultured A549 cells expressed GABAA receptor subunits and COX-2. GABA induced currents in A549 cells, with half-maximal effective concentration of 2.5 µM. Isoflurane (0.1–250 µM) enhanced the GABA currents, which were partially inhibited by bicuculline. Treating A549 cells with muscimol or with isoflurane (250 µM) reduced the expression of COX-2, an effect that was attenuated by cotreatment with bicuculline. Conclusions:GABAA receptors expressed by human ATII cells differ pharmacologically from those in neurons, exhibiting a higher affinity for GABA and lower sensitivity to bicuculline. Clinically relevant concentrations of isoflurane increased the activity of GABAA receptors and reduced the expression of COX-2 in ATII cells. These findings reveal a novel mechanism that could contribute to the antiinflammatory effect of isoflurane in the human lung.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2017

Protective roles of hepatic GABA signaling in acute liver injury of rats.

Shuanglian Wang; Yun-Yan Xiang; Jianchun Zhu; Fan Yi; Jingxin Li; Chuanyong Liu; Wei-Yang Lu

γ-Aminobutyric acid (GABA) is produced by various cells through the catalytic activity of glutamic acid decarboxylase (GAD). Activation of type-A GABA receptor (GABAAR) inhibits stem cell proliferation but protects differentiated cells from injures. The present study investigated hepatic GABA signaling system and the role of this system in liver physiology and pathophysiology. RT-PCR and immunoblot assays identified GAD and GABAAR subunits in rat livers and in HepG2 and Clone 9 hepatocytes. Patch-clamp recording detected GABA-induced currents in Clone 9 hepatocytes and depolarization in WITT cholangiocytes. The function of hepatic GABA signaling system in rats was examined using models of d-galactosamine (GalN)-induced acute hepatocytic injury in vivo and in vitro. The expression of GAD increased whereas GABAAR subunits decreased in the liver of GalN-treated rats. Remarkably, treating rats with GABA or the GABAAR agonist muscimol, but not the GABABR agonist baclofen, protected hepatocytes against GalN toxicity and improved liver function. In addition, muscimol treatment decreased the formation of pseudobile ductules and the enlargement of hepatocytic canaliculi in GalN-treated rats. Our results revealed that a complex GABA signaling system exists in the rat liver. Activation of this intrahepatic GABAergic system protected the liver against toxic injury.NEW & NOTEWORTHY Auto- and paracrine GABAergic signaling systems exist in the rat hepatocytes and cholangiocytes. Activation of GABA signaling protects liver function from d-galactosamine injury by reducing toxic impairment of hepatocytes and by decreasing cholangiocyte proliferation.

Collaboration


Dive into the Yun-Yan Xiang's collaboration.

Top Co-Authors

Avatar

Wei-Yang Lu

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar

Jingxin Li

Sunnybrook Health Sciences Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeremy A. Hirota

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

John F. MacDonald

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge