Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yunan Tang is active.

Publication


Featured researches published by Yunan Tang.


The FASEB Journal | 2011

Resolvin D1 decreases adipose tissue macrophage accumulation and improves insulin sensitivity in obese-diabetic mice

Jason Hellmann; Yunan Tang; Madhavi Kosuri; Aruni Bhatnagar; Matthew Spite

Type 2 diabetes and obesity have emerged as global public health crises. Adipose tissue expansion in obesity promotes accumulation of classically activated macrophages that perpetuate chronic inflammation and sustain insulin resistance. Acute inflammation normally resolves in an actively orchestrated series of molecular and cellular events that ensures return to homeostasis after an inflammatory insult, a process regulated in part by endogenous lipid mediators such as the resolvins. In this study, we sought to determine whether stimulating resolution with resolvin D1 (RvD1) improves insulin sensitivity by resolving chronic inflammation associated with obesity. In male leptin receptor‐deficient (db/db) mice, treatment with RvD1 (2 μg/kg) improved glucose tolerance, decreased fasting blood glucose, and increased insulin‐stimulated Akt phosphorylation in adipose tissue relative to vehicle‐treated mice. Treatment with RvD1 increased adiponectin production, while expression of IL‐6 in adipose tissue was decreased. The formation of crown‐like structures rich in inflammatory F4/80+ CD11c+ macrophages was reduced by >50% in adipose tissue by RvD1 and was associated with an increased percentage of F4/80+ cells expressing macrophage galactose‐type C‐type lectin 1 (MGL‐1), a marker of alternatively activated macrophages. These results suggest that stimulating resolution with the endogenous proresolving mediator RvD1 could provide a novel therapeutic strategy for treating obesity‐induced diabetes.—Hellmann, J., Tang, Y., Kosuri, M., Bhatnagar, A., Spite, M. Resolvin D1 decreases adipose tissue macrophage accumulation and improves insulin sensitivity in obese‐diabetic mice. FASEB J. 25, 2399–2407 (2011). www.fasebj.org


Journal of Immunology | 2011

Deficiency of the Leukotriene B4 Receptor, BLT-1, Protects against Systemic Insulin Resistance in Diet-Induced Obesity

Matthew Spite; Jason Hellmann; Yunan Tang; Steven P. Mathis; Madhavi Kosuri; Aruni Bhatnagar; Venkatakrishna R. Jala; Bodduluri Haribabu

Chronic inflammation is an underlying factor linking obesity with insulin resistance. Diet-induced obesity promotes an increase in circulating levels of inflammatory monocytes and their infiltration into expanding adipose tissue. Nevertheless, the endogenous pathways that trigger and sustain chronic low-grade inflammation in obesity are incompletely understood. In this study, we report that a high-fat diet selectively increases the circulating levels of CD11b+ monocytes in wild-type mice that express leukotriene B4 receptor, BLT-1, and that this increase is abolished in BLT-1–null mice. The accumulation of classically activated (M1) adipose tissue macrophages (ATMs) and the expression of proinflammatory cytokines and chemokines (i.e., IL-6 and Ccl2) was largely blunted in adipose tissue of obese BLT-1−/− mice, whereas the ratio of alternatively activated (M2) ATMs to M1 ATMs was increased. Obese BLT-1−/− mice were protected from systemic glucose and insulin intolerance and this was associated with a decrease in inflammation in adipose tissue and liver and a decrease in hepatic triglyceride accumulation. Deletion of BLT-1 prevented high fat-induced loss of insulin signaling in liver and skeletal muscle. These observations elucidate a novel role of chemoattractant receptor, BLT-1, in promoting monocyte trafficking to adipose tissue and promoting chronic inflammation in obesity and could lead to the identification of new therapeutic targets for treating insulin resistance in obesity.


Diabetes | 2013

Proresolution Therapy for the Treatment of Delayed Healing of Diabetic Wounds

Yunan Tang; Michael J. Zhang; Jason Hellmann; Madhavi Kosuri; Aruni Bhatnagar; Matthew Spite

Obesity and type 2 diabetes are emerging global epidemics associated with chronic, low-grade inflammation. A characteristic feature of type 2 diabetes is delayed wound healing, which increases the risk of recurrent infections, tissue necrosis, and limb amputation. In health, inflammation is actively resolved by endogenous mediators, such as the resolvins. D-series resolvins are generated from docosahexaenoic acid (DHA) and promote macrophage-mediated clearance of microbes and apoptotic cells. However, it is not clear how type 2 diabetes affects the resolution of inflammation. Here, we report that resolution of acute peritonitis is delayed in obese diabetic (db/db) mice. Altered resolution was associated with decreased apoptotic cell and Fc receptor–mediated macrophage clearance. Treatment with resolvin D1 (RvD1) enhanced resolution of peritonitis, decreased accumulation of apoptotic thymocytes in diabetic mice, and stimulated diabetic macrophage phagocytosis. Conversion of DHA to monohydroxydocosanoids, markers of resolvin biosynthesis, was attenuated in diabetic wounds, and local application of RvD1 accelerated wound closure and decreased accumulation of apoptotic cells and macrophages in the wounds. These findings support the notion that diabetes impairs resolution of wound healing and demonstrate that stimulating resolution with proresolving lipid mediators could be a novel approach to treating chronic, nonhealing wounds in patients with diabetes.


Circulation Research | 2012

Overexpression of Endothelial Nitric Oxide Synthase Prevents Diet-Induced Obesity and Regulates Adipocyte Phenotype

Brian E. Sansbury; Timothy D. Cummins; Yunan Tang; Jason Hellmann; Candice R. Holden; Matthew A. Harbeson; Yang Chen; Rakesh P. Patel; Matthew Spite; Aruni Bhatnagar; Bradford G. Hill

Rationale: Endothelial dysfunction is a characteristic feature of diabetes and obesity in animal models and humans. Deficits in nitric oxide production by endothelial nitric oxide synthase (eNOS) are associated with insulin resistance, which is exacerbated by high-fat diet. Nevertheless, the metabolic effects of increasing eNOS levels have not been studied. Objective: The current study was designed to test whether overexpression of eNOS would prevent diet-induced obesity and insulin resistance. Methods and Results: In db/db mice and in high-fat diet-fed wild-type C57BL/6J mice, the abundance of eNOS protein in adipose tissue was decreased without significant changes in eNOS levels in skeletal muscle or aorta. Mice overexpressing eNOS (eNOS transgenic mice) were resistant to diet-induced obesity and hyperinsulinemia, although systemic glucose intolerance remained largely unaffected. In comparison with wild-type mice, high-fat diet-fed eNOS transgenic mice displayed a higher metabolic rate and attenuated hypertrophy of white adipocytes. Overexpression of eNOS did not affect food consumption or diet-induced changes in plasma cholesterol or leptin levels, yet plasma triglycerides and fatty acids were decreased. Metabolomic analysis of adipose tissue indicated that eNOS overexpression primarily affected amino acid and lipid metabolism; subpathway analysis suggested changes in fatty acid oxidation. In agreement with these findings, adipose tissue from eNOS transgenic mice showed higher levels of PPAR-&agr; and PPAR-&ggr; gene expression, elevated abundance of mitochondrial proteins, and a higher rate of oxygen consumption. Conclusions: These findings demonstrate that increased eNOS activity prevents the obesogenic effects of high-fat diet without affecting systemic insulin resistance, in part, by stimulating metabolic activity in adipose tissue.


American Journal of Physiology-endocrinology and Metabolism | 2014

Metabolic remodeling of white adipose tissue in obesity

Timothy D. Cummins; Candice R. Holden; Brian E. Sansbury; Andrew A. Gibb; Jasmit Shah; Nagma Zafar; Yunan Tang; Jason Hellmann; Shesh N. Rai; Matthew Spite; Aruni Bhatnagar; Bradford G. Hill

Adipose tissue metabolism is a critical regulator of adiposity and whole body energy expenditure; however, metabolic changes that occur in white adipose tissue (WAT) with obesity remain unclear. The purpose of this study was to understand the metabolic and bioenergetic changes occurring in WAT with obesity. Wild-type (C57BL/6J) mice fed a high-fat diet (HFD) showed significant increases in whole body adiposity, had significantly lower V̇(O₂), V̇(CO₂), and respiratory exchange ratios, and demonstrated worsened glucose and insulin tolerance compared with low-fat-fed mice. Metabolomic analysis of WAT showed marked changes in lipid, amino acid, carbohydrate, nucleotide, and energy metabolism. Tissue levels of succinate and malate were elevated, and metabolites that could enter the Krebs cycle via anaplerosis were mostly diminished in high-fat-fed mice, suggesting altered mitochondrial metabolism. Despite no change in basal oxygen consumption or mitochondrial DNA abundance, citrate synthase activity was decreased by more than 50%, and responses to FCCP were increased in WAT from mice fed a high-fat diet. Moreover, Pgc1a was downregulated and Cox7a1 upregulated after 6 wk of HFD. After 12 wk of high-fat diet, the abundance of several proteins in the mitochondrial respiratory chain or matrix was diminished. These changes were accompanied by increased Parkin and Pink1, decreased p62 and LC3-I, and ultrastructural changes suggestive of autophagy and mitochondrial remodeling. These studies demonstrate coordinated restructuring of metabolism and autophagy that could contribute to the hypertrophy and whitening of adipose tissue in obesity.


Journal of Immunology | 2011

The Role of Glycogen Synthase Kinase 3 in Regulating IFN-β–Mediated IL-10 Production

Huizhi Wang; Jonathan Brown; Carlos A. Garcia; Yunan Tang; Manjunatha R. Benakanakere; Terrance Greenway; Pascale Alard; Denis F. Kinane; Michael Martin

The ability of IFN-β to induce IL-10 production from innate immune cells is important for its anti-inflammatory properties and is believed to contribute to its therapeutic value in treating multiple sclerosis patients. In this study, we identified that IFN-β stimulates IL-10 production by activating the JAK1- and PI3K-signaling pathways. JAK1 activity was required for IFN-β to activate PI3K and Akt1 that resulted in repression of glycogen synthase kinase 3 (GSK3)-β activity. IFN-β–mediated suppression of GSK3-β promoted IL-10, because IL-10 production by IFN-β–stimulated dendritic cells (DC) expressing an active GSK3-β knockin was severely reduced, whereas pharmacological or genetic inhibition of GSK3-β augmented IL-10 production. IFN-β increased the phosphorylated levels of CREB and STAT3 but only CREB levels were affected by PI3K. Also, a knockdown in CREB, but not STAT3, affected the capacity of IFN-β to induce IL-10 from DC. IL-10 production by IFN-β–stimulated DC was shown to suppress IFN-γ and IL-17 production by myelin oligodendrocyte glycoprotein-specific CD4+ T cells, and this IL-10–dependent anti-inflammatory effect was enhanced by directly targeting GSK3 in DC. These findings highlight how IFN-β induces IL-10 production and the importance that IL-10 plays in its anti-inflammatory properties, as well as identify a therapeutic target that could be used to increase the IL-10–dependent anti-inflammatory properties of IFN-β.


Journal of Immunology | 2013

Increased saturated fatty acids in obesity alter resolution of inflammation in part by stimulating prostaglandin production.

Jason Hellmann; Michael J. Zhang; Yunan Tang; Madhavi J. Rane; Aruni Bhatnagar; Matthew Spite

Extensive evidence indicates that nutrient excess associated with obesity and type 2 diabetes activates innate immune responses that lead to chronic, sterile low-grade inflammation, and obese and diabetic humans also have deficits in wound healing and increased susceptibility to infections. Nevertheless, the mechanisms that sustain unresolved inflammation during obesity remain unclear. In this study, we report that saturated free fatty acids that are elevated in obesity alter resolution of acute sterile inflammation by promoting neutrophil survival and decreasing macrophage phagocytosis. Using a targeted mass spectrometry–based lipidomics approach, we found that in db/db mice, PGE2/D2 levels were elevated in inflammatory exudates during the development of acute peritonitis. Moreover, in isolated macrophages, palmitic acid stimulated cyclooxygenase-2 induction and prostanoid production. Defects in macrophage phagocytosis induced by palmitic acid were mimicked by PGE2 and PGD2 and were reversed by cyclooxygenase inhibition or prostanoid receptor antagonism. Macrophages isolated from obese-diabetic mice expressed prostanoid receptors, EP2 and DP1, and contained significantly higher levels of downstream effector, cAMP, compared with wild-type mice. Therapeutic administration of EP2/DP1 dual receptor antagonist, AH6809, decreased neutrophil accumulation in the peritoneum of db/db mice, as well as the accumulation of apoptotic cells in the thymus. Taken together, these studies provide new insights into the mechanisms underlying altered innate immune responses in obesity and suggest that targeting specific prostanoid receptors may represent a novel strategy for resolving inflammation and restoring phagocyte defects in obese and diabetic individuals.


Journal of Nutritional Biochemistry | 2010

Zinc supplementation partially prevents renal pathological changes in diabetic rats

Yunan Tang; Qin Yang; Jiayin Lu; Xiaolin Zhang; Di Suen; Yi Tan; Litai Jin; Jian Xiao; Rujia Xie; Madhavi J. Rane; Xiaokun Li; Lu Cai

We have demonstrated that Zn supplementation mediated up-regulation of cardiac metallothionein (MT) as a potent antioxidant prevented the development of diabetic cardiomyopathy. The present study was undertaken to test whether induction of renal MT synthesis by Zn supplementation protects the kidney from diabetes-induced damage. Streptozotocin-induced diabetic rats were treated with and without Zn supplementation at 5 mg/kg in drinking water for 3 months. Diabetic renal damage was detected by examining renal pathological alterations and 24-h urinary protein levels. Three-month Zn supplementation immediately after the onset of diabetes, partially but significantly, prevented the kidney from diabetes-induced increases in 24-h urinary proteins and pathological alterations. Diabetes-induced renal oxidative damage, inflammation and up-regulated expression of profibrosis mediator connective tissue growth factor (CTGF) were also markedly attenuated by Zn supplementation, along with significant increases in Zn levels concomitant with MT expression in renal tubular cells. Direct exposure of renal tubular (HK11) cells to high levels of glucose (HG) induced CTGF up-regulation predominantly through ERK (extracellular signal-regulated kinase)1/2-dependent, and partially through p38 mitogen-activated protein kinase (MAPK)-dependent pathways. Pretreatment of HK11 cells with Zn or cadmium induced MT expression and also significantly suppressed HG-induced CTGF expression. These results provide the first evidence for Zn supplementation to attenuate diabetes-induced renal pathological changes, likely through prevention of hyperglycemia-induced CTGF expression by Zn-induced MT in renal tubular cells.


Current Opinion in Endocrinology, Diabetes and Obesity | 2012

Proresolving lipid mediators and diabetic wound healing.

Jason Hellmann; Yunan Tang; Matthew Spite

Purpose of reviewDefective wound healing is one of the most prominent clinical manifestations of both type 1 and type 2 diabetes. As the global rates of diabetes increase, a detailed understanding of the molecular and cellular defects that give rise to unresolved inflammation and delayed wound healing in diabetes is urgently required. Emerging evidence indicates that timely resolution of inflammation is mediated in part by endogenous proresolving lipid mediators, such as resolvins. Here, we review recent advances in the area of resolution and diabetes and highlight the potential of novel proresolving strategies for promoting wound healing in diabetes. Recent findingsMacrophage dysfunction is a critical underlying feature of altered wound healing in diabetic patients. This is associated with defective clearance of apoptotic cells, increased risk of infection, and altered angiogenesis. Diabetes and obesity are associated with chronic inflammation and altered biosynthesis of bioactive lipid mediators that promote the resolution of inflammation. Stimulating resolution with proresolving lipid mediators improves metabolic parameters in diabetes, blunts systemic inflammation, restores defective macrophage phagocytosis, and accelerates wound healing in animal models of obesity and diabetes. SummaryStimulating resolution with proresolving lipid mediators may represent a novel strategy for promoting wound healing in diabetes.


Prostaglandins & Other Lipid Mediators | 2015

Atf3 negatively regulates Ptgs2/Cox2 expression during acute inflammation.

Jason Hellmann; Yunan Tang; Michael J. Zhang; Tsonwin Hai; Aruni Bhatnagar; Sanjay Srivastava; Matthew Spite

By generating prostaglandins, cyclooxygenase-2 (Cox-2/Ptgs2) plays a critical role in regulating inflammatory responses. While several inflammatory stimuli have been shown to increase Ptgs2 expression, less is known about how the transcription of this gene is terminated. Here we show that stimulation of macrophages with yeast zymosan, a TLR2/6 and dectin-1 agonist, causes a transient increase in the expression of Ptgs2 accompanied by a simultaneous increase in the expression of the transcriptional repressor, activating transcription factor-3 (Atf3). The expression of Ptgs2 was significantly higher in resident peritoneal macrophages isolated from Atf3(-/-) mice than that from Atf3(+/+) mice and was associated with higher prostaglandin production upon stimulation with zymosan. In activated macrophages, Atf3 accumulated in the nucleus and chromatin-immunoprecipitation analysis showed that Atf3 is recruited to the Ptgs2 promoter region. In acute peritonitis and in cutaneous wounds, there was increased leukocyte accumulation and higher levels of prostaglandins (PGE2/PGD2) in inflammatory exudates of Atf3(-/-) mice compared with WT mice. Collectively, these results demonstrate that during acute inflammation Atf3 negatively regulates Ptgs2 and therefore dysregulation of this axis could potentially contribute to aberrant Ptgs2 expression in chronic inflammatory diseases. Moreover, this axis could be a new therapeutic target for suppressing Ptgs2 expression and the resultant inflammatory responses.

Collaboration


Dive into the Yunan Tang's collaboration.

Top Co-Authors

Avatar

Matthew Spite

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jason Hellmann

University of Louisville

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brian E. Sansbury

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Madhavi Kosuri

University of Louisville

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge