Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yunbo Luo is active.

Publication


Featured researches published by Yunbo Luo.


Carbohydrate Research | 2009

Antioxidant activity of a water-soluble polysaccharide purified from Pteridium aquilinum

Wentao Xu; Fangfang Zhang; Yunbo Luo; Liyan Ma; Xiaohong Kou; Kunlun Huang

A water-soluble crude polysaccharide, obtained from fern Pteridium aquilinum, was fractionated by DEAE-Sepharose Fast-Flow column chromatography, and purified by Sephacryl S-400 HR column chromatography. The average molecular weight (M(w)) of the purified polysaccharide (PLP) is 458,000 Da. The monosaccharide components of PLP were characterized by gas chromatography (GC), and the majority of the monosaccharide components was glucose (relative mass 58.1%) with low levels of galactose, mannose, rhamnose, and arabinose (relative mass 18.7%, 6.8%, 10.2%, and 6.1%, respectively). The Fourier-transform infrared spectra (FTIR) of PLP revealed typical characteristics of polysaccharides. On the basis of the ferric-reducing antioxidant power assay (FRAP), DPPH radical-scavenging, the superoxide radical assay, and self-oxidation of 1,2,3-phentriol assay, the antioxidant activities of PLP were investigated. The purified polysaccharide was demonstrated to have strong reductive power (FRAP value: 827.6 micromol/L), moderate scavenging activities against DPPH radicals (83.1%) and superoxide radicals (60.5%), and moderate inhibiting power for self-oxidation of 1,2,3-phentriol (52.4%).


Plant Cell Reports | 2007

LeERF1 positively modulated ethylene triple response on etiolated seedling, plant development and fruit ripening and softening in tomato

Ying-Cong Li; Benzhong Zhu; Wentao Xu; Hongliang Zhu; Anjun Chen; Yuan-Hong Xie; Yi Shao; Yunbo Luo

To study the function of LeERF1 in ethylene triple response on etiolated seedling, plant development and fruit ripening and softening, LeERF1 gene was introduced into tomato (Lycopersicon esculentum cv. No. 4 Zhongshu) through Agrobacterium-mediated transformation. The sense LeERF1 and anti-sense LeERF1 transgenic tomato were obtained. Overexpression of LeERF1 in tomato caused the typical ethylene triple response on etiolated seedling. In the adult stage, 35S::LeERF1 resulted in morphological changes in the leaves of the LeERF1-sn lines. Anti-sense LeERF1 fruits had longer shelf life compared with wild-type tomato. The results of this manuscript indicated that LeERF1 positively mediated the ethylene signals, while the function of LeERF1 was verified for the first time to be positively related with ethylene triple response on etiolated seedling, plant development and fruit ripening and softening using LeERF1-sn, wt and LeERF1-as tomato.


BMC Genomics | 2012

Sculpting the maturation, softening and ethylene pathway: The influences of microRNAs on tomato fruits

Jinhua Zuo; Benzhong Zhu; Daqi Fu; Yi-Yi Zhu; Yuanzheng Ma; Lihong Chi; Zheng-Hua Ju; Yunxiang Wang; Baiqiang Zhai; Yunbo Luo

BackgroundMicroRNAs (miRNAs), a ubiquitous class of short RNAs, play vital roles in physiological and biochemical processes in plants by mediating gene silencing at post-transcriptional (PTGS) level. Tomato is a model system to study molecular basis of fleshy fruit ripening and senescence, ethylene biosynthesis and signal transduction owing to its genetic and molecular tractability. To study the functions of miRNAs in tomato fruit ripening and senescence, and their possible roles in ethylene response, the next generation sequencing method was employed to identify miRNAs in tomato fruit. Bioinformatics and molecular biology approaches were combined to profile the miRNAs expression patterns at three different fruit ripening stages and by exogenous ethylene treatment.ResultsIn addition to 7 novel miRNA families, 103 conserved miRNAs belonging to 24 families and 10 non-conserved miRNAs matching 9 families were identified in our libraries. The targets of many these miRNAs were predicted to be transcriptional factors. Other targets are known to play roles in the regulation of metabolic processes. Interestingly, some targets were predicted to be involved in fruit ripening and softening, such as Pectate Lyase, beta-galactosidase, while a few others were predicted to be involved in ethylene biosynthesis and signaling pathway, such as ACS, EIN2 and CTR1. The expression patterns of a number of such miRNAs at three ripening stages were confirmed by stem-loop RT-PCR, which showed a strong negative correlation with that of their targets. The regulation of exogenous ethylene on miRNAs expression profiles were analyzed simultaneously, and 3 down-regulated, 5 up-regulated miRNAs were found in this study.ConclusionsA combination of high throughput sequencing and molecular biology approaches was used to explore the involvement of miRNAs during fruit ripening. Several miRNAs showed differential expression profiles during fruit ripening, and a number of miRNAs were influenced by ethylene treatment. The results suggest the importance of miRNAs in fruit ripening and ethylene response.


Journal of Dairy Science | 2012

Fermented milk supplemented with probiotics and prebiotics can effectively alter the intestinal microbiota and immunity of host animals

Shijie Wang; H. Zhu; C. Lu; Z. Kang; Yunbo Luo; L. Feng; X. Lu

Fermented milk supplemented with 2 probiotic strains, Bifidobacterium lactis Bi-07 and Lactobacillus acidophilus NCFM, and a prebiotic, isomaltooligosaccharide, was orally administered to 100 healthy adults at 480 g/d for 2 wk in a randomized controlled trial. The fecal bacterial compositions of these subjects were examined by culture before and after the intervention. The same fermented milk was also orally fed to BALB/c mice, and immune as well as fecal bacteria analyses were conducted using the same culturing methods. After the intervention, increases in fecal bifidobacteria and lactobacilli were observed among the subjects compared with the subjects in the control group. In contrast, after the intervention, fecal enterobacilli were significantly decreased in the test group compared with the control group. The same effects on the composition of the intestinal microbiota were observed in mice. Furthermore, the tested mice were found to have significantly increased delayed-type hypersensitivity, plaque-forming cells, and half-hemolysis values after the intervention with the fermented milk. In summary, the synbiotic fermented milk containing probiotics and a prebiotic may contribute to improve intestinal health and may have a positive effect on the humoral and cell-mediated immunity of host animals.


Food and Chemical Toxicology | 2008

Comparison of grain from corn rootworm resistant transgenic DAS-59122-7 maize with non-transgenic maize grain in a 90-day feeding study in Sprague-Dawley rats

Xiaoyun He; Kunlun Huang; Xingzheng Li; W. Qin; Bryan Delaney; Yunbo Luo

DAS-59122-7 (59122) is a transgenic maize (Zea mays L.) that contains genes encoding Cry34Ab1 and Cry35Ab1 proteins from Bacillus thuringiensis Berliner strain 149B1 and phosphinothricin acetyltransferase (PAT) protein from Streptomyces viridochromogenes. Expression of these proteins in planta confers resistance to corn rootworms and other Coleopteran parasites and tolerance to herbicides containing glufosinate ammonium, respectively. In the current study, processed flours from 59122 maize grain or its near isogenic control line (091) were used at two concentrations (50% and 70% wt/wt) to produce diets that were fed to rats for 90 days in accordance with Chinese toxicology guidelines (GB15193.13-2003). A commercial AIN93G diet was used as an additional negative control. No significant differences in body weight and feed utilization were observed between rats consuming diets formulated with 59122 and 091 Control corn. Statistical differences (p<0.05) were observed in certain hematology and serum chemistry response variables between rats consuming diets formulated with 59122 or 091 Control flour compared to AIN93G diet. However, the mean value of these response variables in the 59122 groups were not statistically different from those observed in diets formulated with corresponding high and low concentrations of the flour from the 091 Control maize grain. Therefore, the statistical differences were considered to be related to consumption of diets containing high concentrations of maize flour (compared to AIN93G diets) regardless of source rather than to consumption of flour from 59122 maize grain. The results from this study demonstrated that 59122 maize grain is as safe as non-transgenic maize grain.


Food and Chemical Toxicology | 2009

Safety assessment of Cry1Ab/Ac fusion protein.

Wentao Xu; Sishuo Cao; Xiaoyun He; Yunbo Luo; Xing Guo; Yanfang Yuan; Kunlun Huang

Cry1ab/ac gene was fused by both the cry1ab gene (GenBank Accession No. X54939) and the cry1ac gene (GenBank Accession No. Y09787), which was widely used in genetically modified (GM) rice, cotton, maize and so on. In order to support the safety assessment of GM food or feed products containing Cry1Ab/Ac protein, sufficient quantities of Cry1Ab/Ac protein were produced in Escherichia coli for in vitro evaluation and animal studies. The Cry1Ab/Ac protein does not possess the characteristics associated with food toxins or allergens, i.e., it has no sequence homology with any known allergens or toxins, and no N-glycosylation sites, can be rapidly degraded in gastric and intestinal fluids, and is devoid of adverse effects in mice by gavage at a high dose level of 5g (Cry1Ab/Ac protein)/kg body weight. In conclusion, there is a reasonable certainty of no harm resulting from the inclusion of the Cry1Ab/Ac protein in human food or animal feed.


PLOS ONE | 2012

A Novel Universal Primer-Multiplex-PCR Method with Sequencing Gel Electrophoresis Analysis

Wentao Xu; Zhifang Zhai; Kunlun Huang; Nan Zhang; Yanfang Yuan; Ying Feng Shang; Yunbo Luo

In this study, a novel universal primer-multiplex-PCR (UP-M-PCR) method adding a universal primer (UP) in the multiplex PCR reaction system was described. A universal adapter was designed in the 5′-end of each specific primer pairs which matched with the specific DNA sequences for each template and also used as the universal primer (UP). PCR products were analyzed on sequencing gel electrophoresis (SGE) which had the advantage of exhibiting extraordinary resolution. This method overcame the disadvantages rooted deeply in conventional multiplex PCR such as complex manipulation, lower sensitivity, self-inhibition and amplification disparity resulting from different primers, and it got a high specificity and had a low detection limit of 0.1 ng for single kind of crops when screening the presence of genetically modified (GM) crops in mixture samples. The novel developed multiplex PCR assay with sequencing gel electrophoresis analysis will be useful in many fields, such as verifying the GM status of a sample irrespective of the crop and GM trait and so on.


Journal of Food Science | 2009

Universal Primer‐Multiplex PCR Approach for Simultaneous Detection of Escherichia coli, Listeria monocytogenes, and Salmonella spp. in Food Samples

Yanfang Yuan; Wentao Xu; Zhifang Zhai; Hui Shi; Yunbo Luo; Zhuojun Chen; Kunlun Huang

Escherichia coli, Listeria monocytogenes, and Salmonella spp. are 3 kinds of the most important food-borne human pathogens. Traditional microbiological analysis is labor-intensive, time-consuming, and easily contaminated, thus producing false positive signals; it also involves much subjectivity judgments. Multiplex-PCR could be applied to detect multiple target organisms simultaneously to save time and labor, but there is always disproportionate amplification resulting from the disparity of different primers. To gain a rapid and sensitive method, a universal primer-multiplex PCR system (UP-M-PCR) was developed and applied for simultaneous detection of the 3 organisms. This method simplified traditional multiplex-PCR reaction system and overcame its amplification disparities among different primers; moreover, it got a high specificity and sensitivity (85, 155, and 104 copies/reaction for E. coli O157, L. monocytogenes, and Salmonella spp., respectively). Compared with the time-consuming and laborious microbiological analysis, UP-M-PCR had a lower risk of cross-contamination without inoculation and incubation. Test results for 36 food samples showed that UP-M-PCR method got a relative accuracy of 91.77% when compared with traditional microbiological analysis. It could serve as a rapid screening method for pathogen detection and could detect target genes even in dead pathogenic cells. In addition, it has the potential to be performed in an automation mode and might find broader application in simultaneous detection of other multiple pathogens.


Journal of Experimental Botany | 2015

RNA sequencing and functional analysis implicate the regulatory role of long non-coding RNAs in tomato fruit ripening

Benzhong Zhu; Yongfang Yang; Ran Li; Daqi Fu; Liwei Wen; Yunbo Luo; Hongliang Zhu

Highlight A relatively reliable list of tomato lncRNAs was provided. Silencing of novel lncRNAs greatly delayed the ripening of tomato fruits, implying that lncRNA might be an essential factor for fruit ripening.


Science China-life Sciences | 2009

Computational identification of microRNAs and their targets in wheat (Triticum aestivum L.)

Yousheng Han; Fulei Luan; Hongliang Zhu; Yi Shao; Anjun Chen; Chengwen Lu; Yunbo Luo; Benzhong Zhu

AbstractmicroRNAs (miRNAs) are a class of endogenous, non-coding, short (∼21 nt) RNAs directly involved in regulating gene expression at the post-transcriptional level. Previous reports have noted that plant miRNAs in the plant kingdom are highly conserved, which provides the foundation for identification of conserved miRNAs in other plant species through homology alignment. Conserved miRNAs in wheat are identified using EST (Expressed Sequence Tags) and GSS analysis. All previously known miRNAs in other plant species were blasted against wheat EST and GSS sequences to select novel miRNAs in wheat by a series of filtering criteria. From a total of 37 conserved miRNAs belonging to 18 miRNA families 10 conserved miRNAs comprising 4 families were reported in wheat. MiR395 is found to be a special family, because three members belonging to the same miR395 family are clustered together, similar to animal miRNAs. MiRNA targets are transcription factors involved in wheat growth and development, metabolism,and stress responses.

Collaboration


Dive into the Yunbo Luo's collaboration.

Top Co-Authors

Avatar

Wentao Xu

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Kunlun Huang

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Benzhong Zhu

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Xiaoyun He

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Daqi Fu

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Hongliang Zhu

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Yanfang Yuan

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Xiaozhe Qi

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Yi Zhu

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Zhihong Liang

China Agricultural University

View shared research outputs
Researchain Logo
Decentralizing Knowledge