Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yunchang Xie is active.

Publication


Featured researches published by Yunchang Xie.


International Journal of Nanomedicine | 2012

Nanoemulsions coated with alginate/chitosan as oral insulin delivery systems: preparation, characterization, and hypoglycemic effect in rats

Xiaoyang Li; Jianping Qi; Yunchang Xie; Xi Zhang; Shunwen Hu; Ying Xu; Yi Lu; Wei Wu

This study aimed to prepare nanoemulsions coated with alginate/chitosan for oral insulin delivery. Uncoated nanoemulsions were prepared by homogenization of a water in oil in water (w/o/w) multiple emulsion that was composed of Labrafac® CC, phospholipid, Span™ 80 and Cremorphor® EL. Coating of the nanoemulsions was achieved based on polyelectrolyte cross-linking, with sequential addition of calcium chloride and chitosan to the bulk nanoemulsion dispersion that contained alginate. The particle size of the coated nanoemulsions was about 488 nm and the insulin entrapment ratio was 47.3%. Circular dichroism spectroscopy proved conformational stability of insulin against the preparative stress. In vitro leakage study indicated well-preserved integrity of the nanoemulsions in simulated gastric juices. Hypoglycemic effects were observed in both normal and diabetic rats. The relative pharmacological bioavailability of the coated nanoemulsion with 25 and 50 IU/kg insulin were 8.42% and 5.72% in normal rats and 8.19% and 7.84% in diabetic rats, respectively. Moreover, there were significantly prolonged hypoglycemic effects after oral administration of the coated nanoemulsions compared with subcutaneous (sc) insulin. In conclusion, the nanoemulsion coated with alginate/chitosan was a potential delivery system for oral delivery of polypeptides and proteins.


Nanomedicine: Nanotechnology, Biology and Medicine | 2015

Environment-responsive aza-BODIPY dyes quenching in water as potential probes to visualize the in vivo fate of lipid-based nanocarriers

Xiongwei Hu; Jian Zhang; Zhou Yu; Yunchang Xie; Haisheng He; Jianping Qi; Xiaochun Dong; Yi Lu; Weili Zhao; Wei Wu

UNLABELLED Environment-responsive near-infrared (NIR) aza-BODIPY dyes capable of fluorescence quenching in water were explored to visualize the in vivo fate of model lipid-based nanocarriers, solid lipid nanoparticles (SLNs). The water-quenching effect of the dyes was confirmed to be sensitive and remained stable for at least 24h. In vitro lipolysis measured by fluorescence quenching completed within 20min, which was in correlation with alkaline compensation results. In vivo live imaging indicated predominant digestion of SLNs within 2h and complete digestion within 4h, which correlated well to in vitro data. Rekindling of quenched dyes by mixed micelles was observed in vitro, but not in vivo. In sharp contrast, SLNs encapsulating another NIR dye DiR showed persistent fluorescence both in vitro and in vivo despite significant lipolysis. It was envisaged that water-quenching fluorescence dyes can be used as probes to monitor the in vivo fate of lipid-based nanocarriers. FROM THE CLINICAL EDITOR Lipid-based drug delivery systems can provide an excellent nanocarrier platform for the delivery of poorly water-soluble drugs. Nonetheless, the mechanism of oral absorption and subsequent kinetics is poorly understood. In this article, the authors studied the novel use of near-infrared (NIR) aza-BODIPY dyes to visualize the fate of these lipid-based nanocarriers. The positive finding means that this approach may be useful for in-vivo monitoring of lipid-based nanocarriers.


Journal of Biomaterials Applications | 2014

Binary lipids-based nanostructured lipid carriers for improved oral bioavailability of silymarin

Mingzhu Shangguan; Yi Lu; Jianping Qi; Jin Han; Zhiqiang Tian; Yunchang Xie; Fuqiang Hu; Hailong Yuan; Wei Wu

The main purpose of this study was to prepare binary lipids-based nanostructured lipid carriers to improve the oral bioavailability of silymarin, a poorly water-soluble liver protectant. Silymarin-loaded nanostructured lipid carriers were prepared by the method of high-pressure homogenization with glycerol distearates (Precirol ATO-5) and oleic acid as the solid and liquid lipids, respectively, and lecithin (Lipoid E 100) and Tween-80 as the emulsifiers. The silymarin-nanostructured lipid carrier prepared under optimum conditions was spherical in shape with mean particle size of ∼78.87 nm, entrapment efficiency of 87.55%, loading capacity of 8.32%, and zeta potential of −65.3 mV, respectively. In vitro release of silymarin-nanostructured lipid carriers was very limited even after 12 h, while in vitro lipolysis showed fast digestion of nanostructured lipid carriers within 1 h. Relative oral bioavailability of silymarin-nanostructured lipid carriers in Beagle dogs was 2.54- and 3.10-fold that of marketed Legalon® and silymarin solid dispersion pellets, respectively. It was concluded that nanostructured lipid carriers were potential drug delivery systems to improve the bioavailability of silymarin. Other than improved dissolution, alternative mechanisms such as facilitated absorption as well as lymphatic transport may contribute to bioavailability enhancement.


International Journal of Pharmaceutics | 2013

Controlled release of cyclosporine A self-nanoemulsifying systems from osmotic pump tablets: near zero-order release and pharmacokinetics in dogs.

Xi Zhang; Yueneng Yi; Jianping Qi; Yi Lu; Zhiqiang Tian; Yunchang Xie; Hailong Yuan; Wei Wu

It is very important to enhance the absorption simultaneously while designing controlled release delivery systems for poorly water-soluble and poorly permeable drugs (BCS IV). In this study, controlled release of cyclosporine (CyA) was achieved by the osmotic release strategy taking advantage of the absorption-enhancing capacity of self-nanoemulsifying drug delivery systems (SNEDDSs). The liquid SNEDDS consisting of Labrafil M 1944CS, Transcutol P and Cremophor EL was absorbed by the osmotic tablet core excipients (sucrose, lactose monohydrate, polyethylene oxide, and partly pregelatinized starch) and then transformed into osmotic tablets. Near zero-order release could be achieved for CyA-loaded nanoemulsions reconstituted from the SNEDDS. In general, the influencing factor study indicated that the release rate increased with increase of inner osmotic pressure, ratio of osmotic agent to suspending agent, content of pore-forming agent, and size of release orifice, whereas the thickness of the membrane impeded the release of CyA nanoemulsion. Pharmacokinetic study showed steady blood CyA profiles with prolonged Tmax and MRT, and significantly reduced Cmax for self-nanoemulsifying osmotic pump tablet (SNEOPT) in comparison with highly fluctuating profiles of the core tablet and Sandimmune Neoral(®). However, similar oral bioavailability was observed for either controlled release or non-controlled release formulations. It was concluded that simultaneous controlling on CyA release and absorption-enhancing had been achieved by a combination of osmotic tablet and SNEDDS.


Journal of Materials Chemistry B | 2016

Tracking translocation of glucan microparticles targeting M cells: implications for oral drug delivery

Yunchang Xie; Xiongwei Hu; Haisheng He; Fei Xia; Yuhua Ma; Jianping Qi; Xiaochun Dong; Weili Zhao; Yi Lu; Wei Wu

Taking advantage of its ability to deal with exogenous pathogens, the M cell passage has proven to be the most reliable pathway for entry of particulates, thus creating opportunities for oral immunization and delivery of biomacromolecules. Albeit a well-known story, the underlying mechanisms of this pathway are not yet well understood, especially concerning direct evidence of translocation of particulates. Herein, model glucan microparticles (GMs) targeting M cells are employed to track translocation through M cell pathways as well as to various organs via the systemic circulation. GMs were first labeled with a novel kind of near-infrared fluorescent water-quenching probe through encapsulation and locking by stearin. In vivo live imaging indicates prolonged residence of GMs in the gastrointestinal tract for as long as 12 h. GMs are found to be gradually absorbed from the ligated ileum segment but little from the jejunum. Histological examination using confocal laser scanning microscopy (CLSM) confirms distribution of GMs to the basolateral side of the ileum through Peyers patches. However, no detectable fluorescence can be observed in any other organs or tissues until 12 h after administration. After 12 h, GMs can be found in the liver, spleen and lung. At 24 h, GMs accumulate in these organs with approximately 2.3% of the total amount. Repeated administration for three consecutive days augments total accumulation to as high as 4.5%. By tracking GM-bound fluorescence, the particles can be accurately located in these organs. GMs can be transported across Caco-2/Raji and Caco-2/Raji/J774A.1 co-culture monolayers, but not Caco-2 monolayers, in a time-dependent manner. As observed by CLSM, GMs can be voraciously engulfed with as many as 10-15 particles per cell. Evidence of translocation of GMs indicates that GMs can be absorbed through the M cell pathway located at Peyers patches, especially in the ileum, and translocated to reticulo-endothelial organs.


Journal of Materials Chemistry B | 2016

Glucan microparticles thickened with thermosensitive gels as potential carriers for oral delivery of insulin

Yunchang Xie; Sifan Jiang; Fei Xia; Xiongwei Hu; Haisheng He; Zongning Yin; Jianping Qi; Yi Lu; Wei Wu

Although glucan microparticles (GMs) can be efficiently taken up and transported by M cells, their subsequent accumulation in lymphatic tissues of sub-follicle-associated epithelia (FAE) in Peyers patches might present a barrier to the oral delivery of insulin by GMs into the systemic circulation. The goal of this study is to weigh the potential of GMs as carriers for oral delivery of systemic therapeutics using insulin (INS) as a model drug. INS is encapsulated into the inner cavities of GMs by repeated soaking in INS solution at acidic pH values and switching to an isoelectric pH of 5.6 to precipitate INS. To immobilize INS, a thermosensitive poloxamer 407 (P407) gel is introduced into the interior of GMs. Interiorly thickened GMs show significantly decreased in vitro release and well protected INS stability against enzyme-enriched media, highlighting the importance of thickening with P407 gels. A mild and prolonged hypoglycaemic effect is achieved in both normal and diabetic rats for a duration of at least 20 h with pharmacological bioavailability as high as about 9-10%. Lymphatic transportation of GMs is investigated by labelling with a near-infrared water-quenching fluorescent probe in a conscious mesentery lymphatic duct cannulation rat model following oral administration. GMs appear in lymph within the first 2 h, peak at around 6 h and slow down after 10 h with a cumulative amount of over 8% in 24 h. The high correlation between lymphatic transportation and pharmacological bioavailability implies that GMs are principally absorbed via the lymphatic route. An in vitro study on phagocytosis by macrophages confirms the easy and fast uptake of GMs by J774A.1 cell lines with as many as over 10 particles within the cytoplasm of a single cell. Intracellular pharmacokinetics indicates robustness and persistent residence of GMs within the cells. Little effect on cell viability and tight junctions was observed in Caco-2 cell models. It is concluded that GMs are mainly absorbed via the lymphatic route and show potential as carriers for oral delivery of labile therapeutics, though with limited bioavailability due to the sub-FAE residence barriers.


Drug Delivery | 2016

Lipids-based nanostructured lipid carriers (NLCs) for improved oral bioavailability of sirolimus

Qin Yu; Xiongwei Hu; Yuhua Ma; Yunchang Xie; Yi Lu; Jianping Qi; Li Xiang; Fengqian Li; Wei Wu

Abstract The main purpose of this study was to improve the oral bioavailability of sirolimus (SRL), a poorly water-soluble immunosuppressant, by encapsulating into lipids-based nanostructured lipid carriers (NLCs). SRL-loaded NLCs (SRL-NLCs) were prepared by a high-pressure homogenization method with glycerol distearates (PRECIROL ATO-5) as the solid lipid, oleic acid as the liquid lipids, and Tween 80 as the emulsifier. The SRL-NLCs prepared under optimum conditions was spherical in shape with a mean particle size of about 108.3 nm and an entrapment efficiency of 99.81%. In vitro release of SRL-NLCs was very slow, about 2.15% at 12 h, while in vitro lipolysis test showed fast digestion of the NLCs within 1 h. Relative oral bioavailability of SRL-NLCs in Beagle dogs was 1.81-folds that of the commercial nanocrystalline sirolimus tablets Rapamune®. In conclusion, the NLCs show potential to improve the oral bioavailability of SRL.


International Journal of Nanomedicine | 2013

Bile salt/phospholipid mixed micelle precursor pellets prepared by fluid-bed coating.

Fuxia Dong; Yunchang Xie; Jianping Qi; Fuqiang Hu; Yi Lu; Sanming Li; Wei Wu

Bile salt/phospholipid mixed micelles (MMs) are potent carriers used for oral absorption of drugs that are poorly soluble in water; however, there are many limitations associated with liquid formulations. In the current study, the feasibility of preparing bile salt/phospholipid MM precursor (preMM) pellets with high oral bioavailability, using fluid-bed coating technology, was examined. In this study, fenofibrate (FB) and sodium deoxycholate (SDC) were used as the model drug and the bile salt, respectively. To prepare the MMs and to serve as the micellular carrier, a weight ratio of 4:6 was selected for the sodium deoxycholate/phospholipids based on the ternary phase diagram. Polyethylene glycol (PEG) 6000 was selected as the dispersion matrix for precipitation of the MMs onto pellets, since it can enhance the solubilizing ability of the MMs. Coating of the MMs onto the pellets using the fluid-bed coating technology was efficient and the pellets were spherical and intact. MMs could be easily reconstituted from preMM pellets in water. Although they existed in a crystalline state in the preMM pellets, FB could be encapsulated into the reconstituted MMs, and the MMs were redispersed better than solid dispersion pellets (FB:PEG = 1:3) and Lipanthyl®. The redispersibility of the preMM pellets increased with the increase of the FB/PEG/micellar carrier. PreMM pellets with a FB:PEG:micellar carrier ratio of 1:1.5:1.5 showed 284% and 145% bioavailability relative to Lipanthyl® and solid dispersion pellets (FB:PEG = 1:3), respectively. Fluid-bed coating technology has considerable potential for use in preparing sodium deoxycholate/phospholipid preMM pellets, with enhanced oral bioavailability for poorly water-soluble drugs.


Pharmaceutical Development and Technology | 2015

Synchronous microencapsulation of multiple components in silymarin into PLGA nanoparticles by an emulsification/solvent evaporation method

Yunchang Xie; Yueneng Yi; Xiongwei Hu; Mingzhu Shangguan; Lijuan Wang; Yi Lu; Jianping Qi; Wei Wu

Abstract The development of polymeric carriers loaded with extracts suffers from the drawback not to be able to incorporate simultaneously various pharmacological compounds into the formulation. The aim of this study was therefore to achieve synchronous microencapsulation of multiple components of silymarin into poly (lactic-co-glycolic acid) nanoparticle, the most commonly used polymeric carrier with biodegradability and safety. The main strategy taken was to improve the overall entrapment efficiency and to reduce the escaping ratio of the components of different physicochemical properties. The optimized nanoparticles were spherical in morphology with a mean particle size of 150 ± 5 nm. Under common preparative conditions, silybin and isosilybin were entrapped in high efficiency, whereas taxifolin, silychristin and silydianin, especially taxifolin, showed less entrapment because they were more hydrophilic. By changing the pH of the outer aqueous phase and saturating it with silymarin, the entrapment efficiency of taxifolin, silychristin and silydianin could be significantly improved to over 90%, the level similar to silybin and isosilybin, thereby achieving synchronous encapsulation. It could be concluded that synchronous encapsulation of multiple components of silymarin was achieved by optimizing the preparative variables.


Nanoscale Horizons | 2018

Reassessment of long circulation via monitoring of integral polymeric nanoparticles justifies a more accurate understanding

Haisheng He; Sifan Jiang; Yunchang Xie; Yi Lu; Jianping Qi; Xiaochun Dong; Weili Zhao; Zongning Yin; Wei Wu

Monitoring of payloads results in a biased perception of long circulation of nanoparticles. Instead, herein, the long-circulation effect was re-confirmed by monitoring integral nanoparticles, but circulation was not found to be as long as generally perceived. In contrast, disparate pharmacokinetics were obtained by monitoring a model drug, paclitaxel, highlighting the bias of the conventional protocol.

Collaboration


Dive into the Yunchang Xie's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge