Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yunda Huang is active.

Publication


Featured researches published by Yunda Huang.


The New England Journal of Medicine | 2012

Immune-Correlates Analysis of an HIV-1 Vaccine Efficacy Trial

Barton F. Haynes; Peter B. Gilbert; M. Juliana McElrath; Susan Zolla-Pazner; Georgia D. Tomaras; S. Munir Alam; David T. Evans; David C. Montefiori; Chitraporn Karnasuta; Ruengpueng Sutthent; Hua-Xin Liao; Anthony L. DeVico; George K. Lewis; Constance Williams; Abraham Pinter; Youyi Fong; Holly Janes; Allan C. deCamp; Yunda Huang; Mangala Rao; Erik Billings; Nicos Karasavvas; Merlin L. Robb; Viseth Ngauy; Mark S. de Souza; Robert Paris; Guido Ferrari; Robert T. Bailer; Kelly A. Soderberg; Charla Andrews

BACKGROUND In the RV144 trial, the estimated efficacy of a vaccine regimen against human immunodeficiency virus type 1 (HIV-1) was 31.2%. We performed a case-control analysis to identify antibody and cellular immune correlates of infection risk. METHODS In pilot studies conducted with RV144 blood samples, 17 antibody or cellular assays met prespecified criteria, of which 6 were chosen for primary analysis to determine the roles of T-cell, IgG antibody, and IgA antibody responses in the modulation of infection risk. Assays were performed on samples from 41 vaccinees who became infected and 205 uninfected vaccinees, obtained 2 weeks after final immunization, to evaluate whether immune-response variables predicted HIV-1 infection through 42 months of follow-up. RESULTS Of six primary variables, two correlated significantly with infection risk: the binding of IgG antibodies to variable regions 1 and 2 (V1V2) of HIV-1 envelope proteins (Env) correlated inversely with the rate of HIV-1 infection (estimated odds ratio, 0.57 per 1-SD increase; P=0.02; q=0.08), and the binding of plasma IgA antibodies to Env correlated directly with the rate of infection (estimated odds ratio, 1.54 per 1-SD increase; P=0.03; q=0.08). Neither low levels of V1V2 antibodies nor high levels of Env-specific IgA antibodies were associated with higher rates of infection than were found in the placebo group. Secondary analyses suggested that Env-specific IgA antibodies may mitigate the effects of potentially protective antibodies. CONCLUSIONS This immune-correlates study generated the hypotheses that V1V2 antibodies may have contributed to protection against HIV-1 infection, whereas high levels of Env-specific IgA antibodies may have mitigated the effects of protective antibodies. Vaccines that are designed to induce higher levels of V1V2 antibodies and lower levels of Env-specific IgA antibodies than are induced by the RV144 vaccine may have improved efficacy against HIV-1 infection.


The Journal of Infectious Diseases | 2012

Extended Follow-up Confirms Early Vaccine-Enhanced Risk of HIV Acquisition and Demonstrates Waning Effect Over Time Among Participants in a Randomized Trial of Recombinant Adenovirus HIV Vaccine (Step Study)

Ann Duerr; Yunda Huang; Susan Buchbinder; Robert W. Coombs; Jorge Sanchez; Carlos del Rio; Martin Casapia; Steven Santiago; Peter B. Gilbert; Lawrence Corey; Michael N. Robertson; Hvtn Study Team

BACKGROUND The Step Study tested whether an adenovirus serotype 5 (Ad5)-vectored human immunodeficiency virus (HIV) vaccine could prevent HIV acquisition and/or reduce viral load set-point after infection. At the first interim analysis, nonefficacy criteria were met. Vaccinations were halted; participants were unblinded. In post hoc analyses, more HIV infections occurred in vaccinees vs placebo recipients in men who had Ad5-neutralizing antibodies and/or were uncircumcised. Follow-up was extended to assess relative risk of HIV acquisition in vaccinees vs placebo recipients over time. METHODS We used Cox proportional hazard models for analyses of vaccine effect on HIV acquisition and vaccine effect modifiers, and nonparametric and semiparametric methods for analysis of constancy of relative risk over time. RESULTS One hundred seventy-two of 1836 men were infected. The adjusted vaccinees vs placebo recipients hazard ratio (HR) for all follow-up time was 1.40 (95% confidence interval [CI], 1.03-1.92; P= .03). Vaccine effect differed by baseline Ad5 or circumcision status during first 18 months, but neither was significant for all follow-up time. The HR among uncircumcised and/or Ad5-seropositive men waned with time since vaccination. No significant vaccine-associated risk was seen among circumcised, Ad5-negative men (HR, 0.97; P=1.0) over all follow-up time. CONCLUSIONS The vaccine-associated risk seen in interim analysis was confirmed but waned with time from vaccination.


Journal of Immunology | 2006

Preservation of T Cell Proliferation Restricted by Protective HLA Alleles Is Critical for Immune Control of HIV-1 Infection

Helen Horton; Ian Frank; Ruth Baydo; Emilie Jalbert; Justin Penn; Sean Wilson; John McNevin; Matthew McSweyn; Deborah Lee; Yunda Huang; Stephen C. De Rosa; M. Juliana McElrath

HIV-1-infected persons with HLA-B27 and -B57 alleles commonly remain healthy for decades without antiretroviral therapy. Properties of CD8+ T cells restricted by these alleles considered to confer disease protection in these individuals are elusive but important to understand and potentially elicit by vaccination. To address this, we compared CD8+ T cell function induced by HIV-1 immunogens and natural infection using polychromatic flow cytometry. HIV-1-specific CD8+ T cells from all four uninfected immunized and 21 infected subjects secreted IFN-γ and TNF-α. However, CD8+ T cells induced by vaccination and primary infection, but not chronic infection, proliferated to their cognate epitopes. Notably, B27- and B57-restricted CD8+ T cells from nonprogressors exhibited greater expansion than those restricted by other alleles. Hence, CD8+ T cells restricted by certain protective alleles can resist replicative defects, which permits expansion and antiviral effector activities. Our findings suggest that the capacity to maintain CD8+ T cell proliferation, regardless of MHC-restriction, may serve as an important correlate of disease protection in the event of infection following vaccination.


Journal of Clinical Investigation | 2012

Human adenovirus-specific T cells modulate HIV-specific T cell responses to an Ad5-vectored HIV-1 vaccine

Nicole Frahm; Allan C. deCamp; David P. Friedrich; Donald K. Carter; Olivier D. Defawe; James G. Kublin; Danilo R. Casimiro; Ann Duerr; Michael N. Robertson; Susan Buchbinder; Yunda Huang; Gregory A. Spies; Stephen C. De Rosa; M. Juliana McElrath

Recombinant viruses hold promise as vectors for vaccines to prevent infectious diseases with significant global health impacts. One of their major limitations is that preexisting anti-vector neutralizing antibodies can reduce T cell responses to the insert antigens; however, the impact of vector-specific cellular immunity on subsequent insert-specific T cell responses has not been assessed in humans. Here, we have identified and compared adenovirus-specific and HIV-specific T cell responses in subjects participating in two HIV-1 vaccine trials using a vaccine vectored by adenovirus serotype 5 (Ad5). Higher frequencies of pre-immunization adenovirus-specific CD4⁺ T cells were associated with substantially decreased magnitude of HIV-specific CD4⁺ T cell responses and decreased breadth of HIV-specific CD8⁺ T cell responses in vaccine recipients, independent of type-specific preexisting Ad5-specific neutralizing antibody titers. Further, epitopes recognized by adenovirus-specific T cells were commonly conserved across many adenovirus serotypes, suggesting that cross-reactivity of preexisting adenovirus-specific T cells can extend to adenovirus vectors derived from rare serotypes. These findings provide what we believe to be a new understanding of how preexisting viral immunity may impact the efficacy of vaccines under current evaluation for prevention of HIV, tuberculosis, and malaria.


The Journal of Infectious Diseases | 2011

A Trimeric, V2-Deleted HIV-1 Envelope Glycoprotein Vaccine Elicits Potent Neutralizing Antibodies but Limited Breadth of Neutralization in Human Volunteers

Paul Spearman; Michelle Lally; Marnie Elizaga; David C. Montefiori; Georgia D. Tomaras; M. Juliana McElrath; John Hural; Stephen C. De Rosa; Alicia Sato; Yunda Huang; Sharon E. Frey; Paul A. Sato; John Donnelly; Susan W. Barnett; Lawrence Corey

BACKGROUND A key missing element in the development of a successful human immunodeficiency virus (HIV) vaccine is an immunogen that can generate broadly cross-neutralizing antibodies against primary isolates of the virus. METHODS This phase 1 clinical trial employed a DNA prime and subunit envelope protein boost in an attempt to generate cellular and humoral immune responses that might be desirable in a protective HIV vaccine. Priming was performed via intramuscular injection with gag and env DNA adsorbed to polylactide coglycolide microspheres, followed by boosting with a recombinant trimeric envelope (Env) glycoprotein delivered in MF59 adjuvant. RESULTS The DNA prime and protein boost were generally safe and well-tolerated. Env-specific CD4(+) cellular responses were generated that were predominantly detected after Env protein boosting. Neutralizing antibody responses against the homologous SF162 viral isolate were remarkably strong and were present in the majority of vaccine recipients, including a strong response against CD4-induced epitopes on gp120. Despite the promising potency of this vaccine approach, neutralization breadth against heterologous tier 2 strains of HIV-1 was minimal. CONCLUSIONS Potent neutralization against neutralization-sensitive strains of HIV is achievable in humans through a DNA prime, recombinant oligomeric Env protein boost regimen. Eliciting substantial breadth of neutralization remains an elusive goal. CLINICAL TRIALS REGISTRATION NCT00073216.


Journal of Acquired Immune Deficiency Syndromes | 2011

Impact of herpes simplex virus type 2 on HIV-1 acquisition and progression in an HIV vaccine trial (the step study)

Ruanne V. Barnabas; Judith N. Wasserheit; Yunda Huang; Holly Janes; Rhoda Ashley Morrow; Jonathan D. Fuchs; Karen E Mark; Martin Casapia; Devan V. Mehrotra; Susan Buchbinder; Lawrence Corey

Introduction:Extensive observational data suggest that herpes simplex virus type 2 (HSV-2) infection may facilitate HIV acquisition, increase HIV viral load, and accelerate HIV progression and onward transmission. To explore these relationships, we examined the impact of preexisting HSV-2 infection in an international HIV vaccine trial. Methods:We analyzed the associations between prevalent HSV-2 infection and HIV-1 acquisition and progression among 1836 men who have sex with men. We used Cox proportional hazards regression models to estimate the association between HSV-2 infection and both HIV acquisition and antiretroviral therapy (ART) initiation, and linear regression to explore the effect of HSV-2 on pre-ART viral load. Results:HSV-2 infection increased risk of HIV-1 acquisition among all volunteers [adjusted hazard ratio 2.2; 95% confidence interval (CI): 1.4 to 3.5]. Adjusting for demographic variables, circumcision, Ad5 titer, and significant risk behaviors, the risk of HIV acquisition among HSV-2-infected placebo recipients was 3-fold higher than HSV-2 seronegatives (adjusted hazard ratio 3.3; 95% CI: 1.6 to 6.9). Past HSV-2 infection was associated with a 0.2 log10 copies per milliliter higher adjusted mean set point viral load (95% CI: 0.3 lower to 0.6 higher). HSV-2 infection was not associated with time to ART initiation. Conclusions:Among men who have sex with men in an HIV-1 vaccine trial, preexisting HSV-2 infection was a major risk factor for HIV acquisition. Past HSV-2 did not significantly increase HIV viral load or early disease progression. HSV-2-seropositive persons will likely prove more difficult than HSV-2-seronegative persons to protect against HIV infection using vaccines or other prevention strategies.


Journal of Immunological Methods | 2012

Development and implementation of an international proficiency testing program for a neutralizing antibody assay for HIV-1 in TZM-bl cells

Christopher A. Todd; Kelli M. Greene; Xuesong Yu; Daniel A. Ozaki; Hongmei Gao; Yunda Huang; Maggie Wang; Gary Li; Ronald Brown; Blake Wood; M. Patricia D'Souza; Peter B. Gilbert; David C. Montefiori; Marcella Sarzotti-Kelsoe

Recent advances in assay technology have led to major improvements in how HIV-1 neutralizing antibodies are measured. A luciferase reporter gene assay performed in TZM-bl (JC53bl-13) cells has been optimized and validated. Because this assay has been adopted by multiple laboratories worldwide, an external proficiency testing program was developed to ensure data equivalency across laboratories performing this neutralizing antibody assay for HIV/AIDS vaccine clinical trials. The program was optimized by conducting three independent rounds of testing, with an increased level of stringency from the first to third round. Results from the participating domestic and international laboratories improved each round as factors that contributed to inter-assay variability were identified and minimized. Key contributors to increased agreement were experience among laboratories and standardization of reagents. A statistical qualification rule was developed using a simulation procedure based on the three optimization rounds of testing, where a laboratory qualifies if at least 25 of the 30 ID50 values lie within the acceptance ranges. This ensures no more than a 20% risk that a participating laboratory fails to qualify when it should, as defined by the simulation procedure. Five experienced reference laboratories were identified and tested a series of standardized reagents to derive the acceptance ranges for pass-fail criteria. This Standardized Proficiency Testing Program is the first available for the evaluation and documentation of assay equivalency for laboratories performing HIV-1 neutralizing antibody assays and may provide guidance for the development of future proficiency testing programs for other assay platforms.


PLOS ONE | 2011

Pre-Existing Adenovirus Immunity Modifies a Complex Mixed Th1 and Th2 Cytokine Response to an Ad5/HIV-1 Vaccine Candidate in Humans

Samuel O. Pine; James G. Kublin; Scott M. Hammer; Joleen Borgerding; Yunda Huang; Danilo R. Casimiro; M. Juliana McElrath

The results of the recent Step Study highlight a need to clarify the effects of pre-existing natural immunity to a vaccine vector on vaccine-induced T-cell responses. To investigate this interaction, we examined the relationship between pre-existing Ad5 immunity and T-cell cytokine response profiles in healthy, HIV-uninfected recipients of MRKAd5 HIV-1 gag vaccine (HVTN 050, ClinicalTrials.gov #NCT00849732). Participants were grouped by baseline Ad5 neutralizing antibody titer as either Ad5-seronegative (titer ≤18; n = 36) or Ad5-seropositive (titer >200; n = 34). Samples from vaccine recipients were analyzed for immune responses to either HIV-1 Gag peptide pools or Ad5 empty vector using an ex vivo assay that measures thirty cytokines in the absence of long-term culture. The overall profiles of cytokine responses to Gag and Ad5 had similar combinations of induced Th1- and Th2-type cytokines, including IFN-γ, IL-2, TNF-α, IP-10, IL-13, and IL-10, although the Ad5-specific responses were uniformly higher than the Gag-specific responses (p<0.0001 for 9 out of 11 significantly expressed analytes). At the peak response time point, PBMC from Ad5-seronegative vaccinees secreted significantly more IP-10 in response to Gag (p = 0.008), and significantly more IP-10 (p = 0.0009), IL-2 (p = 0.006) and IL-10 (p = 0.05) in response to Ad5 empty vector than PBMC from Ad5-seropositive vaccinees. Additionally, similar responses to the Ad5 vector prior to vaccination were observed in almost all subjects, regardless of Ad5 neutralizing antibody status, and the levels of secreted IFN-γ, IL-10, IL-1Ra and GM-CSF were blunted following vaccination. The cytokine response profile of Gag-specific T cells mirrored the Ad5-specific response present in all subjects before vaccination, and included a number of Th1- and Th2-associated cytokines not routinely assessed in current vaccine trials, such as IP-10, IL-10, IL-13, and GM-CSF. Together, these results suggest that vector-specific humoral responses may reduce vaccine-induced T-cell responses by previously undetected mechanisms.


PLOS ONE | 2010

Equivalence of ELISpot Assays Demonstrated between Major HIV Network Laboratories

Dilbinder K. Gill; Yunda Huang; Gail Levine; Anna Sambor; Donald K. Carter; Alicia Sato; Jakub Kopycinski; Peter Hayes; Bridget Hahn; Josephine Birungi; Tony Tarragona-Fiol; Hong Wan; Mark Randles; Andrew Cooper; Aloysius Ssemaganda; Lorna Clark; Pontiano Kaleebu; Steven G. Self; Richard A. Koup; Blake Wood; M. Juliana McElrath; Josephine H. Cox; John Hural; Jill Gilmour

Background The Comprehensive T Cell Vaccine Immune Monitoring Consortium (CTC-VIMC) was created to provide standardized immunogenicity monitoring services for HIV vaccine trials. The ex vivo interferon-gamma (IFN-γ) ELISpot is used extensively as a primary immunogenicity assay to assess T cell-based vaccine candidates in trials for infectious diseases and cancer. Two independent, GCLP-accredited central laboratories of CTC-VIMC routinely use their own standard operating procedures (SOPs) for ELISpot within two major networks of HIV vaccine trials. Studies are imperatively needed to assess the comparability of ELISpot measurements across laboratories to benefit optimal advancement of vaccine candidates. Methods We describe an equivalence study of the two independently qualified IFN-g ELISpot SOPs. The study design, data collection and subsequent analysis were managed by independent statisticians to avoid subjectivity. The equivalence of both response rates and positivity calls to a given stimulus was assessed based on pre-specified acceptance criteria derived from a separate pilot study. Findings Detection of positive responses was found to be equivalent between both laboratories. The 95% C.I. on the difference in response rates, for CMV (−1.5%, 1.5%) and CEF (−0.4%, 7.8%) responses, were both contained in the pre-specified equivalence margin of interval [−15%, 15%]. The lower bound of the 95% C.I. on the proportion of concordant positivity calls for CMV (97.2%) and CEF (89.5%) were both greater than the pre-specified margin of 70%. A third CTC-VIMC central laboratory already using one of the two SOPs also showed comparability when tested in a smaller sub-study. Interpretation The described study procedure provides a prototypical example for the comparison of bioanalytical methods in HIV vaccine and other disease fields. This study also provides valuable and unprecedented information for future vaccine candidate evaluations on the comparison and pooling of ELISpot results generated by the CTC-VIMC central core laboratories.


Statistics in Biopharmaceutical Research | 2009

Simultaneous Evaluation of the Magnitude and Breadth of a Left- and Right-Censored Multivariate Response, With Application to HIV Vaccine Development

Yunda Huang; Peter B. Gilbert; David C. Montefiori; Steve Self

To compare antibody-based HIV-1 vaccine candidates in Phase I and II trials, both the magnitude and breadth of neutralization against multiple strains of virus are main endpoints. These also are key markers to be evaluated in vaccine efficacy trials as immune correlates of protection against HIV-1 infection. More generally, magnitude and breadth are considered when there is interest in comparing quantitative multivariate response data between groups. In this article, we discuss two approaches to simultaneously evaluating the magnitude and breadth of a multivariate response. We suggest methods for the summarization and group comparison of multivariate response data that are subject to left and/or right censoring. We discuss applications to data from a phase III clinical trial (Vax004). We also present simulation-based sample size calculations and power analyses of the described methods.

Collaboration


Dive into the Yunda Huang's collaboration.

Top Co-Authors

Avatar

Peter B. Gilbert

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

M. Juliana McElrath

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Holly Janes

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lawrence Corey

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Lily Zhang

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

James G. Kublin

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John Hural

Fred Hutchinson Cancer Research Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge