Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yunfei Xi is active.

Publication


Featured researches published by Yunfei Xi.


Clays and Clay Minerals | 2005

THERMAL CHARACTERIZATION OF SURFACTANT-MODIFIED MONTMORILLONITES

Hongping He; Zhe Ding; Jianxi Zhu; Pen Yuan; Yunfei Xi; Dan Yang; Ray L. Frost

The thermal stability of surfactant-modified clays plays a key role in the synthesis and processing of organoclay-based nanocomposites. Differential thermal analysis (DTA), thermogravimetric measurement and differential scanning calorimetry (DSC) were used in this study to characterize the thermal stability of hexadecyltrimethylammonium bromide-modified montmorillonites prepared at different surfactant concentrations. Analysis by DSC shows that the molecular environment of the surfactant within the montmorillonite galleries is different from that in the bulk state. The endothermic peak at 70–100°C in the DTA curves of the modified montmorillonites is attributed to both the surfactant phase transformation and the loss of free and interlayer water. With an increase of surfactant-packing density, the amount of water residing in the modified montmorillonite decreases gradually, reflecting the improvement of the hydrophobic property for the organoclay. However, the increase in the surfactant packing density within the galleries leads to a decrease in the thermal stability of the organoclays.With an increase of initial surfactant concentration for the preparation of organoclays, the surfactant- packing density increases gradually to a ‘saturated’ state. It was found that the cationic surfactant was introduced into the montmorillonite interlayer not only by cation exchange but also by physical adsorption.


Journal of Colloid and Interface Science | 2010

Synthesis, characterization of palygorskite supported zero-valent iron and its application for methylene blue adsorption

Ray L. Frost; Yunfei Xi; Hongping He

In this work, natural palygorskite impregnated with zero-valent iron (ZVI) was prepared and characterized. The combination of ZVI particles on surface of fibrous palygorskite can help to overcome the disadvantage of ultra-fine powders which may have strong tendency to agglomerate into larger particles, resulting in an adverse effect on both effective surface area and catalyst performance. There is a significant increase of methylene blue (MB) decolourized efficiency on acid treated palygorskite with ZVI grafted, within 5 min, the concentration of MB in the solution was decreased from 94 mg/L to around 20 mg/L and the equilibration was reached at about 30-60 min with only around 10 mg/L MB remained in solution. Changes in the surface and structure of prepared materials were characterized using X-ray diffraction (XRD), infrared (IR) spectroscopy, surface analysing and scanning electron microscopy (SEM) with element analysis and mapping. Comparing with zero-valent iron and palygorskite, the presence of zero-valent iron reactive species on the palygorskite surface strongly increases the decolourization capacity for methylene blue, and it is significant for providing novel modified clay catalyst materials for the removal of organic contaminants from waste water.


Clays and Clay Minerals | 2006

Microstructure of HDTMA+-Modified Montmorillonite and its Influence on Sorption Characteristics

Hongping He; Qin Zhou; Wayde N. Martens; Theo Kloprogge; Peng Yuan; Yunfei Xi; Jianxi Zhu; Ray L. Frost

A series of organoclays with monolayers, bilayers, pseudotrilayers, paraffin monolayers and paraffin bilayers were prepared from montmorillonite by ion exchange with hexadecyltrimethylammonium bromide (HDTMAB). The HDTMAB concentrations used for preparing the organoclays were 0.5, 0.7, 1.0, 1.5, 2.0 and 2.5 times the montmorillonite cation exchange capacity (CEC). The microstructural parameters, including the BET-N2 surface area, pore volume, pore size, and surfactant loading and distribution, were determined by X-ray diffraction, N2 adsorption-desorption and high-resolution thermogravimetric analysis (HRTG). The BET-N2 surface area decreased from 55 to 1 m2/g and the pore volume decreased from 0.11 to 0.01 cm3/g as surfactant loading was increased from Na-Mt to 2.5CEC-Mt. The average pore diameter increased from 6.8 to 16.3 nm as surfactant loading was increased. After modifying montmorillonite with HDTMAB, two basic organoclay models were proposed on the basis of HRTG results: (1) the surfactant mainly occupied the clay interlayer space (0.5CEC-Mt, 0.7CEC-Mt, 1.0CEC-Mt); and (2) both the clay interlayer space and external surface (1.5CEC-Mt, 2.0CEC-Mt, 2.5CEC-Mt) were modified by surfactant. In model 1, the sorption mechanism of p-nitrophenol to the organoclay at a relatively low concentration involved both surface adsorption and partitioning, whereas, in model 2 it mainly involved only partitioning. This study demonstrates that the distribution of adsorbed surfactant and the arrangement of adsorbed HDTMA+ within the clay interlayer space control the efficiency and mechanism of sorption by the organoclay rather than BET-N2 surface area, pore volume, and pore diameter.


Critical Reviews in Environmental Science and Technology | 2012

Bioreactive Organoclay: A New Technology for Environmental Remediation

Binoy Sarkar; Yunfei Xi; Mallavarapu Megharaj; G. S. R. Krishnamurti; Mark Bowman; Harry Rose; Ravendra Naidu

Organoclays, which are synthesized by introducing organic molecules into the clay structure, have been proven effective for remediation of many contaminants in soil and water. The underlying principle for this is sorption. However, a new remediation approach that combines sorption and biodegradation/biotransformation has evolved in recent years. Contaminants sorbed on organoclays can be successfully degraded or transformed into less toxic forms by specific microorganisms, provided the participating microbes thrive well on the organoclays. Thus, bioreactive organoclays are prepared. The authors present a critical review of the scientific principles and scope of integrating microorganisms with organoclays to develop a new environmental friendly, risk–based, and cost-effective remediation technology. Furthermore, they propose new research directions in the field.


Journal of Hazardous Materials | 2011

Structural characterisation of Arquad® 2HT-75 organobentonites: Surface charge characteristics and environmental application

Binoy Sarkar; Mallavarapu Megharaj; Yunfei Xi; Ravi Naidu

Organoclays are increasingly being used to remediate both contaminated soils and waste water. The present study was attempted to elucidate the structural evolution of bentonite based organoclays prepared from a commercially available, low-cost alkyl ammonium surfactant Arquad(®) 2HT-75. XRD, FTIR, SEM and zeta potential measurement were used to characterise the organoclays. In particular, the relationship between surface charge characteristics of the organoclays and their ability to remediate organic contaminants such as phenol and p-nitrophenol was investigated. The investigation revealed that the arrangement and conformation of surfactant molecules in the bentonite became more regular, ordered and solid-like as of Arquad(®) 2HT-75 loading increased. This also led to the formation of a positive zeta potential on the surface of organobentonites prepared with 3.57:1 and 4.75:1 surfactant-clay (w/w) ratio. The zeta potential values decreased with increasing pH of the suspension. The adsorption data of phenol and p-nitrophenol were best fitted to Freundlich isotherm model. The adsorption was controlled by multiple mechanisms of partitioning, physico-sorption and chemisorption. The outcomes of this study are useful for the synthesis of low cost organobentonite adsorbents for the remediation of ionisable organic contaminants such as phenol and p-nitrophenol from waste water.


Journal of Hazardous Materials | 2013

Degradation of simazine from aqueous solutions by diatomite-supported nanosized zero-valent iron composite materials.

Zhiming Sun; Shuilin Zheng; Godwin A. Ayoko; Ray L. Frost; Yunfei Xi

A novel composite material based on deposition of nanosized zero-valent iron (nZVI) particles on acid-leached diatomite was synthesised for the removal of a chlorinated contaminant in water. The nZVI/diatomite composites were characterised by X-ray diffraction, scanning electron microscopy, elemental analysis, transmission electron microscopy and X-ray photoelectron spectroscopy. Compared with the pure nZVI particles, better dispersion of nZVI particles on the surface or inside the pores of diatom shells was observed. The herbicide simazine was selected as the model chlorinated contaminant and the removal efficiency by nZVI/diatomite composite was compared with that of the pristine nZVI and commercial iron powder. It was found that the diatomite supported nZVI composite material prepared by centrifugation exhibits relatively better efficient activity in decomposition of simazine than commercial Fe, lab synthesised nZVI and composite material prepared via rotary evaporation, and the optimum experimental conditions were obtained based on a series of batch experiments. This study on immobilising nZVI particles onto diatomite opens a new avenue for the practical application of nZVI and the diatomite-supported nanosized zero-valent iron composite materials have potential applications in environmental remediation.


Journal of Colloid and Interface Science | 2016

Environmental applications of inorganic–organic clays for recalcitrant organic pollutants removal: Bisphenol A

Suramya I. Rathnayake; Yunfei Xi; Ray L. Frost; Godwin A. Ayoko

Bisphenol-A (BPA) adsorption onto inorganic-organic clays (IOCs) was investigated. For this purpose, IOCs synthesised using octadecyltrimethylammonium bromide (ODTMA, organic modifier) and hydroxy aluminium (Al13, inorganic modifier) were used. Three intercalation methods were employed with varying ODTMA concentration in the synthesis of IOCs. Molecular interactions of clay surfaces with ODTMA and Al13 and their arrangements within the interlayers were determined using Fourier transform infrared spectroscopy (FTIR). Surface area and porous structure of IOCs were determined by applying Brunauer, Emmett, and Teller (BET) method to N2 adsorption-desorption isotherms. Surface area decreased upon ODTMA intercalation while it increased with Al13 pillaring. As a result, BET specific surface area of IOCs was considerably higher than those of organoclays. Initial concentration of BPA, contact time and adsorbent dose significantly affected BPA adsorption into IOCs. Pseudo-second order kinetics model is the best fit for BPA adsorption into IOCs. Both Langmuir and Freundlich adsorption isotherms were applicable for BPA adsorption (R(2)>0.91) for IOCs. Langmuir maximum adsorption capacity for IOCs was as high as 109.89mgg(-1) and it was closely related to the loaded ODTMA amount into the clay. Hydrophobic interactions between long alkyl chains of ODTMA and BPA are responsible for BPA adsorption into IOCs.


RSC Advances | 2015

Simultaneous adsorption of Cd(II) and phosphate on Al13 pillared montmorillonite

Lingya Ma; Jianxi Zhu; Yunfei Xi; Runliang Zhu; Hongping He; Xiaoliang Liang; Godwin A. Ayoko

Al13 pillared montmorillonites (AlPMts) prepared with different Al/clay ratios were used to remove Cd(II) and phosphate from aqueous solution. The structure of AlPMts was characterized by X-ray diffraction (XRD), Thermogravimetric analysis (TG), and N2 adsorption–desorption. The basal spacing, intercalated amount of Al13 cations, and specific surface area of AlPMts increased with the increase of the Al/clay ratio. In the single adsorption system, with the increase of the Al/clay ratio, the adsorption of phosphate on AlPMts increased but that of Cd(II) decreased. Significantly enhanced adsorptions of Cd(II) and phosphate on AlPMts were observed in a simultaneous system. For both contaminants, the adsorption of one contaminant would increase with the increase of the initial concentration of the other one and increase in the Al/clay ratio. The enhancement of the adsorption of Cd(II) was much higher than that of phosphate on AlPMt. This suggests that the intercalated Al13 cations are the primary co-adsorption sites for phosphate and Cd(II). X-ray photoelectron spectroscopy (XPS) indicated comparable binding energy of P2p but a different binding energy of Cd3d in single and simultaneous systems. The adsorption and XPS results suggested that the formation of P-bridge ternary surface complexes was the possible adsorption mechanism for promoted uptake of Cd(II) and phosphate on AlPMt.


Clays and Clay Minerals | 2015

Organo-clays as sorbents of hydrophobic organic contaminants: Sorptive characteristics and approaches to enhancing sorption capacity

Runliang Zhu; Qing Zhou; Jianxi Zhu; Yunfei Xi; Hongping He

When clay minerals, notably smectites, intercalate organic cations, their interlayer surfaces change from hydrophilic to hydrophobic. The resultant intercalates, known as organo-clays (OCs), have a large affinity for hydrophobic organic contaminants (HOCs). Organo-clays are used as sorbents of HOCs in wastewater treatment and as sorptive barriers in landfill liners. The structural and sorptive characteristics of OCs with respect to HOCs have been studied extensively, and a large volume of literature has accumulated over the past few decades. The interactions of OCs with HOCs and the various approaches to improving the sorption capacity of OCs are reviewed here, with particular reference to the application of novel analytical techniques, such as molecular modeling, to characterizing the OC—HOC interaction.


Journal of Colloid and Interface Science | 2015

Structural and thermal properties of inorganic–organic montmorillonite: Implications for their potential environmental applications

Suramya I. Rathnayake; Yunfei Xi; Ray L. Frost; Godwin A. Ayoko

Inorganic-organic clays (IOCs), clays intercalated with both organic cations such as cationic surfactants and inorganic cations such as metal hydroxy polycations have the properties of both organic and pillared clays, and thereby the ability to remove both inorganic and organic contaminants from water simultaneously. In this study, IOCs were synthesised using three different methods with different surfactant concentrations. Octadecyltrimethylammonium bromide (ODTMA) and hydroxy aluminium ([Al13O4(OH)24(H2O)12](7+) or Al13) are used as the organic and inorganic modifiers (intercalation agents). According to the results, the interlayer distance, the surfactant loading amount and the Al/Si ratio of IOCs strictly depend on the intercalation method and the intercalation agent ratio. Interlayers of IOCs synthesised by intercalating ODTMA before Al13 and IOCs synthesised by simultaneous intercalation of ODTMA and Al13 were increased with increasing the ODTMA concentration used in the synthesis procedure and comparatively high loading amounts could be observed in them. In contrast, Al/Si decreased with increasing ODTMA concentration in these two types of IOCs. The results suggest that Al-pillars can be fixed within the interlayers by calcination and any increment in the amount of ODTMA used in the synthesis procedure did not affect the interlayer distance of the IOCs. Overall the study provides valuable insights into the structure and properties of the IOCs and their potential environmental applications.

Collaboration


Dive into the Yunfei Xi's collaboration.

Top Co-Authors

Avatar

Ray L. Frost

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Ricardo Scholz

Colorado School of Mines

View shared research outputs
Top Co-Authors

Avatar

Andrés López

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Hongping He

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Fernanda Maria Belotti

Universidade Federal de Itajubá

View shared research outputs
Top Co-Authors

Avatar

Jianxi Zhu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Sara J. Palmer

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Runliang Zhu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Godwin A. Ayoko

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Cristiano Lana

Universidade Federal de Ouro Preto

View shared research outputs
Researchain Logo
Decentralizing Knowledge