Yunfeng Wu
Xiamen University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yunfeng Wu.
BMC Bioinformatics | 2014
Li Song; Dapeng Li; Xiangxiang Zeng; Yunfeng Wu; Li Guo; Quan Zou
BackgroundDNA-binding proteins are vital for the study of cellular processes. In recent genome engineering studies, the identification of proteins with certain functions has become increasingly important and needs to be performed rapidly and efficiently. In previous years, several approaches have been developed to improve the identification of DNA-binding proteins. However, the currently available resources are insufficient to accurately identify these proteins. Because of this, the previous research has been limited by the relatively unbalanced accuracy rate and the low identification success of the current methods.ResultsIn this paper, we explored the practicality of modelling DNA binding identification and simultaneously employed an ensemble classifier, and a new predictor (nDNA-Prot) was designed. The presented framework is comprised of two stages: a 188-dimension feature extraction method to obtain the protein structure and an ensemble classifier designated as imDC. Experiments using different datasets showed that our method is more successful than the traditional methods in identifying DNA-binding proteins. The identification was conducted using a feature that selected the minimum Redundancy and Maximum Relevance (mRMR). An accuracy rate of 95.80% and an Area Under the Curve (AUC) value of 0.986 were obtained in a cross validation. A test dataset was tested in our method and resulted in an 86% accuracy, versus a 76% using iDNA-Prot and a 68% accuracy using DNA-Prot.ConclusionsOur method can help to accurately identify DNA-binding proteins, and the web server is accessible at http://datamining.xmu.edu.cn/~songli/nDNA. In addition, we also predicted possible DNA-binding protein sequences in all of the sequences from the UniProtKB/Swiss-Prot database.
IEEE Transactions on Neural Systems and Rehabilitation Engineering | 2010
Yunfeng Wu; Sridhar Sri Krishnan
To assess the gait variability in patients with Parkinsons disease (PD), we first used the nonparametric Parzen-window method to estimate the probability density functions (PDFs) of stride interval and its two subphases (i.e., swing interval and stance interval). The gait rhythm standard deviation (¿) parameters computed with the PDFs indicated that the gait variability is significantly increased in PD. Signal turns count (STC) was also derived from each outlier-processed gait rhythm time series to serve as a dominant feature, which could be used to characterize the gait variability in PD. Since it was observed that the statistical parameters of swing interval or stance interval were highly correlated with those of stride interval, this article only used the stride interval parameters, i.e., ¿r and STCr , to form the feature vector in the pattern classification experiments. The results evaluated with the leave-one-out cross-validation method demonstrated that the least squares support vector machine with polynomial kernels was able to provide a classification accurate rate of 90.32% and an area (Az) of 0.952 under the receiver operating characteristic curve, both of which were better than the results obtained with the linear discriminant analysis (accuracy: 67.74%, Az: 0.917). The features and the classifiers used in the present study could be useful for monitoring of the gait in PD.
Medical & Biological Engineering & Computing | 2008
Rangaraj M. Rangayyan; Yunfeng Wu
Externally detected vibroarthrographic (VAG) signals bear diagnostic information related to the roughness, softening, breakdown, or the state of lubrication of the articular cartilage surfaces of the knee joint. Analysis of VAG signals could provide quantitative indices for noninvasive diagnosis of articular cartilage breakdown and staging of osteoarthritis. We propose the use of statistical parameters of VAG signals, including the form factor involving the variance of the signal and its derivatives, skewness, kurtosis, and entropy, to classify VAG signals as normal or abnormal. With a database of 89 VAG signals, screening efficiency of up to 0.82 was achieved, in terms of the area under the receiver operating characteristics curve, using a neural network classifier based on radial basis functions.
Medical Engineering & Physics | 2009
Yunfeng Wu; Rangaraj M. Rangayyan; Yachao Zhou; Sin-Chun Ng
We present a novel unbiased and normalized adaptive noise reduction (UNANR) system to suppress random noise in electrocardiographic (ECG) signals. The system contains procedures for the removal of baseline wander with a two-stage moving-average filter, comb filtering of power-line interference with an infinite impulse response (IIR) comb filter, an additive white noise generator to test the systems performance in terms of signal-to-noise ratio (SNR), and the UNANR model that is used to estimate the noise which is subtracted from the contaminated ECG signals. The UNANR model does not contain a bias unit, and the coefficients are adaptively updated by using the steepest-descent algorithm. The corresponding adaptation process is designed to minimize the instantaneous error between the estimated signal power and the desired noise-free signal power. The benchmark MIT-BIH arrhythmia database was used to evaluate the performance of the UNANR system with different levels of input noise. The results of adaptive filtering and a study on convergence of the UNANR learning rate demonstrate that the adaptive noise-reduction system that includes the UNANR model can effectively eliminate random noise in ambulatory ECG recordings, leading to a higher SNR improvement than that with the same system using the popular least-mean-square (LMS) filter. The SNR improvement provided by the proposed UNANR system was higher than that provided by the system with the LMS filter, with the input SNR in the range of 5-20 dB over the 48 ambulatory ECG recordings tested.
Computers in Biology and Medicine | 2014
Quan Zou; Yaozong Mao; Lingling Hu; Yunfeng Wu; Zhi Liang Ji
MicroRNA (miRNA) family is a group of miRNAs that derive from the common ancestor. Normally, members from the same miRNA family have similar physiological functions; however, they are not always conserved in primary sequence or secondary structure. Proper family prediction from primary sequence will be helpful for accurate identification and further functional annotation of novel miRNA. Therefore, we introduced a novel machine learning-based web server, the miRClassify, which can rapidly identify miRNA from the primary sequence and classify it into a miRNA family regardless of similarity in sequence and structure. Additionally, the medical implication of the miRNA family is also provided when it is available in PubMed. The web server is accessible at the link http://datamining.xmu.edu.cn/software/MIR/home.html.
Annals of Biomedical Engineering | 2009
Rangaraj M. Rangayyan; Yunfeng Wu
Knee-joint sounds or vibroarthrographic (VAG) signals contain diagnostic information related to the roughness, softening, breakdown, or the state of lubrication of the articular cartilage surfaces. Objective analysis of VAG signals provides features for pattern analysis, classification, and noninvasive diagnosis of knee-joint pathology of various types. We propose parameters related to signal variability for the analysis of VAG signals, including an adaptive turns count and the variance of the mean-squared value computed during extension, flexion, and a full swing cycle of the leg, for the purpose of classification as normal or abnormal, that is, screening. With a database of 89 VAG signals, screening efficiency of up to 0.8570 was achieved, in terms of the area under the receiver operating characteristics curve, using a neural network classifier based on radial-basis functions, with all of the six proposed features. Using techniques for feature selection, the turns counts for the flexion and extension parts of the VAG signals were chosen as the top two features, leading to an improved screening efficiency of 0.9174. The proposed methods could lead to objective criteria for improved selection of patients for clinical procedures and reduce healthcare costs.
Journal of Experimental and Theoretical Artificial Intelligence | 2011
Yunfeng Wu; Sridhar Sri Krishnan
The knee-joint vibroarthrographic (VAG) signal could be used as an indicator with regard to the degenerative articular cartilage surfaces of the knee. Computer-aided analysis of VAG signals could provide quantitative indices for the noninvasive diagnosis of knee-joint pathologies at different stages. In this article, we propose a novel multiple classifier system (MCS) based on a recurrent neural network (RNN), to classify a dataset of 89 knee-joint VAG signals. The MCS consists of a group of component classifiers in the form of the least-squares support vector machine. The knowledge generated by the component classifiers is combined with the linear and normalised fusion model, the weights of which are optimised during the energy convergence process of the RNN. The experimental results showed that the proposed MCS was able to provide the classification accuracy of 80.9% and the area of 0.9484 under the receiver operating characteristics curve. The diagnostic performance of the MCS was superior to that obtained with the prevailing fusion approaches, such as the majority vote, the simple average and the median average.
Biomedical Signal Processing and Control | 2010
Rangaraj M. Rangayyan; Yunfeng Wu
Pathological conditions of knee joints have been observed to cause changes in the characteristics of vibroarthrographic (VAG) signals. Several studies have proposed many parameters for the analysis and classification of VAG signals; however, no statistical modeling methods have been explored to analyze the distinctions in the probability density functions (PDFs) between normal and abnormal VAG signals. In the present work, models of PDFs were derived using the Parzen-window approach to represent the statistical characteristics of normal and abnormal VAG signals. The Kullback-Leibler distance was computed between the PDF of the signal to be classified and the PDF models for normal and abnormal VAG signals. Additional statistical measures, including the mean, standard deviation, coefficient of variation, skewness, kurtosis, and entropy, were also derived from the PDFs obtained. An overall classification accuracy of 77.53%, sensitivity of 71.05%, and specificity of 82.35% were obtained with a database of 89 VAG signals using a neural network with radial basis functions with the leave-one-out procedure for cross validation. The screening efficiency was derived to be 0.8322, in terms of the area under the receiver operating characteristics curve.
BioMed Research International | 2013
Quan Zou; Zhen Wang; Xinjun Guan; Bin Liu; Yunfeng Wu; Ziyu Lin
Biology is meaningful and important to identify cytokines and investigate their various functions and biochemical mechanisms. However, several issues remain, including the large scale of benchmark datasets, serious imbalance of data, and discovery of new gene families. In this paper, we employ the machine learning approach based on a novel ensemble classifier to predict cytokines. We directly selected amino acids sequences as research objects. First, we pretreated the benchmark data accurately. Next, we analyzed the physicochemical properties and distribution of whole amino acids and then extracted a group of 120-dimensional (120D) valid features to represent sequences. Third, in the view of the serious imbalance in benchmark datasets, we utilized a sampling approach based on the synthetic minority oversampling technique algorithm and K-means clustering undersampling algorithm to rebuild the training set. Finally, we built a library for dynamic selection and circulating combination based on clustering (LibD3C) and employed the new training set to realize cytokine classification. Experiments showed that the geometric mean of sensitivity and specificity obtained through our approach is as high as 93.3%, which proves that our approach is effective for identifying cytokines.
Medical Engineering & Physics | 2011
Yunfeng Wu; Lei Shi
Human locomotion is regulated by the central nervous system (CNS). The neurophysiological changes in the CNS due to amyotrophic lateral sclerosis (ALS) may cause altered gait cycle duration (stride interval) or other gait rhythm. This article used a statistical method to analyze the altered stride interval in patients with ALS. We first estimated the probability density functions (PDFs) of stride interval from the outlier-processed gait rhythm time series, by using the nonparametric Parzen-window approach. Based on the PDFs estimated, the mean of the left-foot stride interval and the modified Kullback-Leibler divergence (MKLD) can be computed to serve as dominant features. In the classification experiments, the least squares support vector machine (LS-SVM) with Gaussian kernels was applied to distinguish the stride patterns in ALS patients. According to the results obtained with the stride interval time series recorded from 16 healthy control subjects and 13 patients with ALS, the key findings of the present study are summarized as follows. (1) It is observed that the mean of stride interval computed based on the PDF for the left foot is correlated with that for the right foot in patients with ALS. (2) The MKLD parameter of the gait in ALS is significantly different from that in healthy controls. (3) The diagnostic performance of the nonlinear LS-SVM, evaluated by the leave-one-out cross-validation method, is superior to that obtained by the linear discriminant analysis. The LS-SVM can effectively separate the stride patterns between the groups of healthy controls and ALS patients with an overall accurate rate of 82.8% and an area of 0.869 under the receiver operating characteristic curve.