Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yunfu Lin is active.

Publication


Featured researches published by Yunfu Lin.


Nature Structural & Molecular Biology | 2006

Transcription promotes contraction of CAG repeat tracts in human cells

Yunfu Lin; Vincent Dion; John H. Wilson

Induced transcription through CAG repeats in human cells increases repeat contraction ∼15-fold in both confluent and proliferating cells. Repeats are stabilized against contraction by siRNA knockdown of MSH2, MSH3 or XPA, but not by knockdown of MSH6, XPC or FEN1. These results define a pathway for CAG·CTG repeat contraction that is initiated by transcription, depends on elements of mismatch and nucleotide-excision repair and does not require DNA replication.


Proceedings of the National Academy of Sciences of the United States of America | 2010

R loops stimulate genetic instability of CTG·CAG repeats

Yunfu Lin; Sharon Y.R. Dent; John H. Wilson; Robert D. Wells; Marek Napierala

Transcription stimulates the genetic instability of trinucleotide repeat sequences. However, the mechanisms leading to transcription-dependent repeat length variation are unclear. We demonstrate, using biochemical and genetic approaches, that the formation of stable RNA·DNA hybrids enhances the instability of CTG·CAG repeat tracts. In vitro transcribed CG-rich repeating sequences, unlike AT-rich repeats and nonrepeating sequences, form stable, ribonuclease A-resistant structures. These RNA·DNA hybrids are eliminated by ribonuclease H treatment. Mutation in the rnhA1 gene that decreases the activity of ribonuclease HI stimulates the instability of CTG·CAG repeats in E. coli. Importantly, the effect of ribonuclease HI depletion on repeat instability requires active transcription. We also showed that transcription-dependent CTG·CAG repeat instability in human cells is stimulated by siRNA knockdown of RNase H1 and H2. In addition, we used bisulfite modification, which detects single-stranded DNA, to demonstrate that the nontemplate DNA strand at transcribed CTG·CAG repeats remains partially single-stranded in human genomic DNA, thus indicating that it is displaced by an RNA·DNA hybrid. These studies demonstrate that persistent hybrids between the nascent RNA transcript and the template DNA strand at CTG·CAG tracts promote instability of DNA trinucleotide repeats.


Molecular and Cellular Biology | 2007

Transcription-Induced CAG Repeat Contraction in Human Cells Is Mediated in Part by Transcription-Coupled Nucleotide Excision Repair

Yunfu Lin; John H. Wilson

ABSTRACT Expansions of CAG repeat tracts in the germ line underlie several neurological diseases. In human patients and mouse models, CAG repeat tracts display an ongoing instability in neurons, which may exacerbate disease symptoms. It is unclear how repeats are destabilized in nondividing cells, but it cannot involve DNA replication. We showed previously that transcription through CAG repeats induces their instability (Y. Lin, V. Dion, and J. H. Wilson, Nat. Struct. Mol. Biol. 13:179-180). Here, we present a genetic analysis of the link between transcription-induced repeat instability and nucleotide excision repair (NER) in human cells. We show that short interfering RNA-mediated knockdown of CSB, a component specifically required for transcription-coupled NER (TC-NER), and knockdowns of ERCC1 and XPG, which incise DNA adjacent to damage, stabilize CAG repeat tracts. These results suggest that TC-NER is involved in the pathway for transcription-induced CAG repeat instability. In contrast, knockdowns of OGG1 and APEX1, key components involved in base excision repair, did not affect repeat instability. In addition, repeats are stabilized by knockdown of transcription factor IIS, consistent with a requirement for RNA polymerase II (RNAPII) to backtrack from a transcription block. Repeats also are stabilized by knockdown of either BRCA1 or BARD1, which together function as an E3 ligase that can ubiquitinate arrested RNAPII. Treatment with the proteasome inhibitor MG132, which stabilizes repeats, confirms proteasome involvement. We integrate these observations into a tentative pathway for transcription-induced CAG repeat instability that can account for the contractions observed here and potentially for the contractions and expansions seen with human diseases.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Zinc-finger directed double-strand breaks within CAG repeat tracts promote repeat instability in human cells

David Mittelman; Christopher Moye; Jason Morton; Kristen Sykoudis; Yunfu Lin; Dana Carroll; John H. Wilson

Expanded triplet repeats have been identified as the genetic basis for a growing number of neurological and skeletal disorders. To examine the contribution of double-strand break repair to CAG·CTG repeat instability in mammalian systems, we developed zinc finger nucleases (ZFNs) that recognize and cleave CAG repeat sequences. Engineered ZFNs use a tandem array of zinc fingers, fused to the FokI DNA cleavage domain, to direct double-strand breaks (DSBs) in a site-specific manner. We first determined that the ZFNs cleave CAG repeats in vitro. Then, using our previously described tissue culture assay for identifying modifiers of CAG repeat instability, we found that transfection of ZFN-expression vectors induced up to a 15-fold increase in changes to the CAG repeat in human and rodent cell lines, and that longer repeats were much more sensitive to cleavage than shorter ones. Analysis of individual colonies arising after treatment revealed a spectrum of events consistent with ZFN-induced DSBs and dominated by repeat contractions. We also found that expressing a dominant-negative form of RAD51 in combination with a ZFN, dramatically reduced the effect of the nuclease, suggesting that DSB-induced repeat instability is mediated, in part, through homology directed repair. These studies identify a ZFN as a useful reagent for characterizing the effects of DSBs on CAG repeats in cells.


Human Molecular Genetics | 2008

Dnmt1 deficiency promotes CAG repeat expansion in the mouse germline

Vincent Dion; Yunfu Lin; Leroy Hubert; Robert A. Waterland; John H. Wilson

Expanded CAG repeat tracts are the cause of at least a dozen neurodegenerative disorders. In humans, long CAG repeats tend to expand during transmissions from parent to offspring, leading to an earlier age of disease onset and more severe symptoms in subsequent generations. Here, we show that the maintenance DNA methyltransferase Dnmt1, which preserves the patterns of CpG methylation, plays a key role in CAG repeat instability in human cells and in the male and female mouse germlines. SiRNA knockdown of Dnmt1 in human cells destabilized CAG triplet repeats, and Dnmt1 deficiency in mice promoted intergenerational expansion of CAG repeats at the murine spinocerebellar ataxia type 1 (Sca1) locus. Importantly, Dnmt1(+/-) SCA1 mice, unlike their Dnmt1(+/+) SCA1 counterparts, closely reproduced the intergenerational instability patterns observed in human SCA1 patients. In addition, we found aberrant DNA and histone methylation at sites within the CpG island that abuts the expanded repeat tract in Dnmt1-deficient mice. These studies suggest that local chromatin structure may play a role in triplet repeat instability. These results are consistent with normal epigenetic changes during germline development contributing to intergenerational instability of CAG repeats in mice and in humans.


Molecular Carcinogenesis | 2009

Transcription destabilizes triplet repeats

Yunfu Lin; Leroy Hubert; John H. Wilson

Triplet repeat expansion is the molecular basis for several human diseases. Intensive studies using systems in bacteria, yeast, flies, mammalian cells, and mice have provided important insights into the molecular processes that are responsible for mediating repeat instability. The age‐dependent, ongoing repeat instability in somatic tissues, especially in terminally differentiated neurons, strongly suggests a robust role for pathways that are independent of DNA replication. Several genetic studies have indicated that transcription can play a critical role in repeat instability, potentially providing a basis for the instability observed in neurons. Transcription‐induced repeat instability can be modulated by several DNA repair proteins, including those involved in mismatch repair (MMR) and transcription‐coupled nucleotide excision repair (TC‐NER). Though the mechanism is unclear, it is likely that transcription facilitates the formation of repeat‐specific secondary structures, which act as intermediates to trigger DNA repair, eventually leading to changes in the length of the repeat tract. In addition, other processes associated with transcription can also modulate repeat instability, as shown in a variety of different systems. Overall, the mechanisms underlying repeat instability in humans are unexpectedly complicated. Because repeat‐disease genes are widely expressed, transcription undoubtedly contributes to the repeat instability observed in many diseases, but it may be especially important in nondividing cells. Transcription‐induced instability is likely to involve an extensive interplay not only of the core transcription machinery and DNA repair proteins, but also of proteins involved in chromatin remodeling, regulation of supercoiling, and removal of stalled RNA polymerases, as well as local DNA sequence effects.


Human Molecular Genetics | 2011

Xpa deficiency reduces CAG trinucleotide repeat instability in neuronal tissues in a mouse model of SCA1

Leroy Hubert; Yunfu Lin; Vincent Dion; John H. Wilson

Expansion of trinucleotide repeats (TNRs) is responsible for a number of human neurodegenerative disorders. The molecular mechanisms that underlie TNR instability in humans are not clear. Based on results from model systems, several mechanisms for instability have been proposed, all of which focus on the ability of TNRs to form alternative structures during normal DNA transactions, including replication, DNA repair and transcription. These abnormal structures are thought to trigger changes in TNR length. We have previously shown that transcription-induced TNR instability in cultured human cells depends on several genes known to be involved in transcription-coupled nucleotide excision repair (NER). We hypothesized that NER normally functions to destabilize expanded TNRs. To test this hypothesis, we bred an Xpa null allele, which eliminates NER, into the TNR mouse model for spinocerebellar ataxia type 1 (SCA1), which carries an expanded CAG repeat tract at the endogenous mouse Sca1 locus. We find that Xpa deficiency does not substantially affect TNR instability in either the male or female germline; however, it dramatically reduces CAG repeat instability in neuronal tissues-striatum, hippocampus and cerebral cortex-but does not alter CAG instability in kidney or liver. The tissue-specific effect of Xpa deficiency represents a novel finding; it suggests that tissue-to-tissue variation in CAG repeat instability arises, in part, by different underlying mechanisms. These results validate our original findings in cultured human cells and suggest that transcription may induce NER-dependent TNR instability in neuronal tissues in humans.


Molecular and Cellular Biology | 2010

Convergent Transcription through a Long CAG Tract Destabilizes Repeats and Induces Apoptosis

Yunfu Lin; Mei Leng; Ma Wan; John H. Wilson

ABSTRACT Short repetitive sequences are common in the human genome, and many fall within transcription units. We have previously shown that transcription through CAG repeat tracts destabilizes them in a way that depends on transcription-coupled nucleotide excision repair and mismatch repair. Recent observations that antisense transcription accompanies sense transcription in many human genes led us to test the effects of antisense transcription on triplet repeat instability in human cells. Here, we report that simultaneous sense and antisense transcription (convergent transcription) initiated from two inducible promoters flanking a CAG95 tract in a nonessential gene enhances repeat instability synergistically, arrests the cell cycle, and causes massive cell death via apoptosis. Using chemical inhibitors and small interfering RNA (siRNA) knockdowns, we identified the ATR (ataxia-telangiectasia mutated [ATM] and Rad3 related) signaling pathway as a key mediator of this cellular response. RNA polymerase II, replication protein A (RPA), and components of the ATR signaling pathway accumulate at convergently transcribed repeat tracts, accompanied by phosphorylation of ATR, CHK1, and p53. Cell death depends on simultaneous sense and antisense transcription and is proportional to their relative levels, it requires the presence of the repeat tract, and it occurs in both proliferating and nonproliferating cells. Convergent transcription through a CAG repeat represents a novel mechanism for triggering a cellular stress response, one that is initiated by events at a single locus in the genome and resembles the response to DNA damage.


DNA Repair | 2009

Diverse effects of individual mismatch repair components on transcription-induced CAG repeat instability in human cells.

Yunfu Lin; John H. Wilson

Several neurodegerative diseases are caused by expansion of a trinucleotide repeat tract in a critical gene. The mechanism of repeat instability is not yet defined, but in mice it requires MutSbeta, a complex of MSH2 and MSH3. We showed previously that transcription through a CAG repeat tract induces repeat instability in human cells via a pathway that requires the mismatch repair (MMR) components, MSH2 and MSH3, and the entire transcription-coupled nucleotide excision repair pathway [Y. Lin, V. Dion, J.H. Wilson, Transcription promotes contraction of CAG repeat tracts in human cells, Nat. Struct. Mol. Biol. 13 (2006) 179-180; Y. Lin, J.H. Wilson, Transcription-induced CAG repeat contraction in human cells is mediated in part by transcription-coupled nucleotide excision repair, Mol. Cell Biol. 27 (2007) 6209-6217]. Here, we examine the role of downstream MMR processing components on transcription-induced CAG instability, using our selection assay for repeat contraction. In contrast to knockdowns of MSH2 or MSH3, which reduce repeat contractions, we show that siRNA-mediated depletion of MLH1 or PMS2 increases contraction frequency. Knockdown of DNMT1, which has been identified as an MMR factor in genetic studies, also elevates the frequency of contraction. Simultaneous knockdowns of MLH1 or DNMT1 along with MSH2, XPA, or BRCA1, whose individual knockdowns each decrease CAG contraction, yield intermediate frequencies. In sharp contrast, double knockdown of MLH1 and DNMT1 additively increases the frequency of CAG contraction. These results show that MMR components can alter repeat stability in diverse ways, either enhancing or suppressing CAG contraction, and they provide insight into the influence of MMR components on transcription-induced CAG repeat instability.


Molecular and Cellular Biology | 2011

Topoisomerase 1 and Single-Strand Break Repair Modulate Transcription-Induced CAG Repeat Contraction in Human Cells

Leroy Hubert; Yunfu Lin; Vincent Dion; John H. Wilson

ABSTRACT Expanded trinucleotide repeats are responsible for a number of neurodegenerative diseases, such as Huntington disease and myotonic dystrophy type 1. The mechanisms that underlie repeat instability in the germ line and in the somatic tissues of human patients are undefined. Using a selection assay based on contraction of CAG repeat tracts in human cells, we screened the Prestwick chemical library in a moderately high-throughput assay and identified 18 novel inducers of repeat contraction. A subset of these compounds targeted pathways involved in the management of DNA supercoiling associated with transcription. Further analyses using both small molecule inhibitors and small interfering RNA (siRNA)-mediated knockdowns demonstrated the involvement of topoisomerase 1 (TOP1), tyrosyl-DNA phosphodiesterase 1 (TDP1), and single-strand break repair (SSBR) in modulating transcription-dependent CAG repeat contractions. The TOP1-TDP1-SSBR pathway normally functions to suppress repeat instability, since interfering with it stimulated repeat contractions. We further showed that the increase in repeat contractions when the TOP1-TDP1-SSBR pathway is compromised arises via transcription-coupled nucleotide excision repair, a previously identified contributor to transcription-induced repeat instability. These studies broaden the scope of pathways involved in transcription-induced CAG repeat instability and begin to define their interrelationships.

Collaboration


Dive into the Yunfu Lin's collaboration.

Top Co-Authors

Avatar

John H. Wilson

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Vincent Dion

Friedrich Miescher Institute for Biomedical Research

View shared research outputs
Top Co-Authors

Avatar

Leroy Hubert

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Nimrat Chatterjee

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

David Mittelman

Virginia Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar

Kristen Sykoudis

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Patricia Yotnda

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

William Y. Lin

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge