Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yung-Jen Chuang is active.

Publication


Featured researches published by Yung-Jen Chuang.


PLOS ONE | 2011

A Novel Molecular Signature Identified by Systems Genetics Approach Predicts Prognosis in Oral Squamous Cell Carcinoma

Chien Hua Peng; Chun Ta Liao; Shih Chi Peng; Yin Ju Chen; Ann-Joy Cheng; Jyh Lyh Juang; Chi Ying Tsai; Tse Ching Chen; Yung-Jen Chuang; Chuan Yi Tang; Wen-Ping Hsieh; Tzu Chen Yen

Molecular methods for predicting prognosis in patients with oral cavity squamous cell carcinoma (OSCC) are urgently needed, considering its high recurrence rate and tendency for metastasis. The present study investigated the genetic basis of variations in gene expression associated with poor prognosis in OSCC using Affymetrix SNP 6.0 and Affymetrix GeneChip Human Gene 1.0 ST arrays. We identified recurrent DNA amplifications scattered from 8q22.2 to 8q24.3 in 112 OSCC specimens. These amplicons demonstrated significant associations with increased incidence of extracapsular spread, development of second primary malignancies, and poor survival. Fluorescence in situ hybridization, in a validation panel consisting of 295 cases, confirmed these associations. Assessment of the effects of copy number variations (CNVs) on genome-wide variations in gene expression identified a total of 85 CNV-associated transcripts enriched in the MYC-centered regulatory network. Twenty-four transcripts associated with increased risk of second primary malignancies, tumor relapse, and poor survival. Besides MYC itself, a novel dysregulated MYC module plays a key role in OSCC carcinogenesis. This study identified a candidate molecular signature associated with poor prognosis in OSCC patients, which may ultimately facilitate patient-tailored selection of therapeutic strategies.


Infection and Immunity | 2010

Zebrafish as a Model Host for Candida albicans Infection

Chun-Cheih Chao; Po-Chen Hsu; Jen Cf; Chen Ih; Wang Ch; Chan Hc; Pei-Wen Tsai; Kai Che Tung; Chung-Yu Lan; Yung-Jen Chuang

ABSTRACT In this work, the zebrafish model organism was developed to obtain a minivertebrate host system for a Candida albicans infection study. We demonstrated that C. albicans can colonize and invade zebrafish at multiple anatomical sites and kill the fish in a dose-dependent manner. Inside zebrafish, we monitored the progression of the C. albicans yeast-to-hypha transition by tracking morphogenesis, and we monitored the corresponding gene expression of the pathogen and the early host immune response. We performed a zebrafish survival assay with different C. albicans strains (SC5314, ATCC 10231, an hgc1 mutant, and a cph1/efg1 double mutant) to determine each strains virulence, and the results were similar to findings reported in previous mouse model studies. Finally, using zebrafish embryos, we monitored C. albicans infection and visualized the interaction between pathogen and host myelomonocytic cells in vivo. Taken together, the results of this work demonstrate that zebrafish can be a useful host model to study C. albicans pathogenesis, and they highlight the advantages of using the zebrafish model in future invasive fungal research.


Zebrafish | 2010

Combined Use of MS-222 (Tricaine) and Isoflurane Extends Anesthesia Time and Minimizes Cardiac Rhythm Side Effects in Adult Zebrafish

Wei-Chang Huang; Yi-Shan Hsieh; I-Hui Chen; Chieh-Huei Wang; Han-Wei Chang; Chung-Chi Yang; Tien-Hsiung Ku; Shin-Rung Yeh; Yung-Jen Chuang

As an important vertebrate model organism, zebrafish are typically studied at the embryonic stage to take advantage of their properties of transparency and rapid development. However, more and more studies require assays to be done on adults. Consequently, a good anesthetic is needed to sedate and immobilize the adult zebrafish during experimental manipulation. To date, MS-222 (tricaine methanesulfonate) is the only Food and Drug Administration approved anesthetic for aquaculture and is widely used by the zebrafish research community. Nevertheless, in adult zebrafish, MS-222 reduces heart rate and causes high mortality under long-term sedation. Consequently, adult zebrafish have limited research applications. In this study, we present a new anesthetic formula for the adult zebrafish that results in minimal side effects on its physiology under prolonged sedation. The combined use of MS-222 with isoflurane effectively extended the time of anesthesia, and the zebrafish recovered faster than when anesthetized with the traditional MS-222. Moreover, MS-222 + isoflurane did not cause reduction of heart rates, which enabled long-term electrocardiogram recording and microscopic observation on the adult zebrafish. Taken together, the new MS-222 + isoflurane formula will facilitate general applications of adult zebrafish in time-consuming experiments with minimal side effects on the model organisms overall physiology.


PLOS ONE | 2013

Treatment of Glucocorticoids Inhibited Early Immune Responses and Impaired Cardiac Repair in Adult Zebrafish.

Wei-Chang Huang; Chung-Chi Yang; I-Hui Chen; Yu-Min Lawrence Liu; Shing-Jyh Chang; Yung-Jen Chuang

Myocardial injury, such as myocardial infarction (MI), can lead to drastic heart damage. Zebrafish have the extraordinary ability to regenerate their heart after a severe injury. Upon ventricle resection, fibrin clots seal the wound and serve as a matrix for recruiting myeloid-derived phagocytes. Accumulated neutrophils and macrophages not only reduce the risk of infection but also secrete cytokines and growth factors to promote tissue repair. However, the underlying cellular and molecular mechanisms for how immune responses are regulated during the early stages of cardiac repair are still unclear. We investigated the role and programming of early immune responses during zebrafish heart regeneration. We found that zebrafish treated with an anti-inflammatory glucocorticoid had significantly reduced heart regenerative capacities, consistent with findings in other higher vertebrates. Moreover, inhibiting the inflammatory response led to excessive collagen deposition. A microarray approach was used to assess the differential expression profiles between zebrafish hearts with normal or impaired healing. Combining cytokine profiling and immune-staining, our data revealed that impaired heart regeneration could be due to reduced phagocyte recruitment, leading to diminished angiogenesis and cell proliferation post-cardiac injury. Despite their robust regenerative ability, our study revealed that glucocorticoid treatment could effectively hinder cardiac repair in adult zebrafish by interfering with the inflammatory response. Our findings may help to clarify the initiation of cardiac repair, which could be used to develop a therapeutic intervention that may enhance cardiac repair in humans to compensate for the loss of cardiomyocytes after an MI.


BMC Medical Genomics | 2010

Dynamic cross-talk analysis among TNF-R, TLR-4 and IL-1R signalings in TNFα-induced inflammatory responses

Shih-Kuang Yang; Yu-Chao Wang; Chun-Cheih Chao; Yung-Jen Chuang; Chung-Yu Lan; Bor-Sen Chen

BackgroundDevelopment in systems biology research has accelerated in recent years, and the reconstructions for molecular networks can provide a global view to enable in-depth investigation on numerous system properties in biology. However, we still lack a systematic approach to reconstruct the dynamic protein-protein association networks at different time stages from high-throughput data to further analyze the possible cross-talks among different signaling/regulatory pathways.MethodsIn this study we integrated protein-protein interactions from different databases to construct the rough protein-protein association networks (PPANs) during TNFα-induced inflammation. Next, the gene expression profiles of TNFα-induced HUVEC and a stochastic dynamic model were used to rebuild the significant PPANs at different time stages, reflecting the development and progression of endothelium inflammatory responses. A new cross-talk ranking method was used to evaluate the potential core elements in the related signaling pathways of toll-like receptor 4 (TLR-4) as well as receptors for tumor necrosis factor (TNF-R) and interleukin-1 (IL-1R).ResultsThe highly ranked cross-talks which are functionally relevant to the TNFα pathway were identified. A bow-tie structure was extracted from these cross-talk pathways, suggesting the robustness of network structure, the coordination of signal transduction and feedback control for efficient inflammatory responses to different stimuli. Further, several characteristics of signal transduction and feedback control were analyzed.ConclusionsA systematic approach based on a stochastic dynamic model is proposed to generate insight into the underlying defense mechanisms of inflammation via the construction of corresponding signaling networks upon specific stimuli. In addition, this systematic approach can be applied to other signaling networks under different conditions in different species. The algorithm and method proposed in this study could expedite prospective systems biology research when better experimental techniques for protein expression detection and microarray data with multiple sampling points become available in the future.


PLOS ONE | 2011

Soluble THSD7A Is an N-Glycoprotein That Promotes Endothelial Cell Migration and Tube Formation in Angiogenesis

Meng-Wei Kuo; Chian-Huei Wang; Hsiao-Chun Wu; Shing-Jyh Chang; Yung-Jen Chuang

Background Thrombospondin type I domain containing 7A (THSD7A) is a novel neural protein that is known to affect endothelial migration and vascular patterning during development. To further understand the role of THSD7A in angiogenesis, we investigated the post-translational modification scheme of THS7DA and to reveal the underlying mechanisms by which this protein regulates blood vessel growth. Methodology/Principal Findings Full-length THSD7A was overexpressed in human embryonic kidney 293T (HEK293T) cells and was found to be membrane associated and N-glycosylated. The soluble form of THSD7A, which is released into the cultured medium, was harvested for further angiogenic assays. We found that soluble THSD7A promotes human umbilical vein endothelial cell (HUVEC) migration and tube formation. HUVEC sprouts and zebrafish subintestinal vessel (SIV) angiogenic assays further revealed that soluble THSD7A increases the number of branching points of new vessels. Interestingly, we found that soluble THSD7A increased the formation of filopodia in HUVEC. The distribution patterns of vinculin and phosphorylated focal adhesion kinase (FAK) were also affected, which implies a role for THSD7A in focal adhesion assembly. Moreover, soluble THSD7A increased FAK phosphorylation in HUVEC, suggesting that THSD7A is involved in regulating cytoskeleton reorganization. Conclusions/Significance Taken together, our results indicate that THSD7A is a membrane-associated N-glycoprotein with a soluble form. Soluble THSD7A promotes endothelial cell migration during angiogenesis via a FAK-dependent mechanism and thus may be a novel neuroangiogenic factor.


PLOS ONE | 2013

Dynamic Transcript Profiling of Candida albicans Infection in Zebrafish: A Pathogen-Host Interaction Study

Yan Yu Chen; Chun-Cheih Chao; Fu-Chen Liu; Po-Chen Hsu; Hsueh-Fen Chen; Shih-Chi Peng; Yung-Jen Chuang; Chung-Yu Lan; Wen-Ping Hsieh; David Shan-Hill Wong

Candida albicans is responsible for a number of life-threatening infections and causes considerable morbidity and mortality in immunocompromised patients. Previous studies of C. albicans pathogenesis have suggested several steps must occur before virulent infection, including early adhesion, invasion, and late tissue damage. However, the mechanism that triggers C. albicans transformation from yeast to hyphae form during infection has yet to be fully elucidated. This study used a systems biology approach to investigate C. albicans infection in zebrafish. The surviving fish were sampled at different post-infection time points to obtain time-lapsed, genome-wide transcriptomic data from both organisms, which were accompanied with in sync histological analyses. Principal component analysis (PCA) was used to analyze the dynamic gene expression profiles of significant variations in both C. albicans and zebrafish. The results categorized C. albicans infection into three progressing phases: adhesion, invasion, and damage. Such findings were highly supported by the corresponding histological analysis. Furthermore, the dynamic interspecies transcript profiling revealed that C. albicans activated its filamentous formation during invasion and the iron scavenging functions during the damage phases, whereas zebrafish ceased its iron homeostasis function following massive hemorrhage during the later stages of infection. Most of the immune related genes were expressed as the infection progressed from invasion to the damage phase. Such global, inter-species evidence of virulence-immune and iron competition dynamics during C. albicans infection could be crucial in understanding control fungal pathogenesis.


Journal of Innate Immunity | 2013

Identification of Infection- and Defense-Related Genes via a Dynamic Host-Pathogen Interaction Network Using a Candida Albicans-Zebrafish Infection Model

Zong-Yu Kuo; Yung-Jen Chuang; Chun-Cheih Chao; Fu-Chen Liu; Chung-Yu Lan; Bor-Sen Chen

Candida albicans infections and candidiasis are difficult to treat and create very serious therapeutic challenges. In this study, based on interactive time profile microarray data of C. albicans and zebrafish during infection, the infection-related protein-protein interaction (PPI) networks of the two species and the intercellular PPI network between host and pathogen were simultaneously constructed by a dynamic interaction model, modeled as an integrated network consisting of intercellular invasion and cellular defense processes during infection. The signal transduction pathways in regulating morphogenesis and hyphal growth of C. albicans were further investigated based on significant interactions found in the intercellular PPI network. Two cellular networks were also developed corresponding to the different infection stages (adhesion and invasion), and then compared with each other to identify proteins from which we can gain more insight into the pathogenic role of hyphal development in the C. albicans infection process. Important defense-related proteins in zebrafish were predicted using the same approach. The hyphal growth PPI network, zebrafish PPI network and host-pathogen intercellular PPI network were combined to form an integrated infectious PPI network that helps us understand the systematic mechanisms underlying the pathogenicity of C. albicans and the immune response of the host, and may help improve medical therapies and facilitate the development of new antifungal drugs.


BMC Bioinformatics | 2010

Computational modeling with forward and reverse engineering links signaling network and genomic regulatory responses: NF-κB signaling-induced gene expression responses in inflammation

Shih Chi Peng; David Shan-Hill Wong; Kai Che Tung; Yan Yu Chen; Chun-Cheih Chao; Chien Hua Peng; Yung-Jen Chuang; Chuan Yi Tang

BackgroundSignal transduction is the major mechanism through which cells transmit external stimuli to evoke intracellular biochemical responses. Diverse cellular stimuli create a wide variety of transcription factor activities through signal transduction pathways, resulting in different gene expression patterns. Understanding the relationship between external stimuli and the corresponding cellular responses, as well as the subsequent effects on downstream genes, is a major challenge in systems biology. Thus, a systematic approach is needed to integrate experimental data and theoretical hypotheses to identify the physiological consequences of environmental stimuli.ResultsWe proposed a systematic approach that combines forward and reverse engineering to link the signal transduction cascade with the gene responses. To demonstrate the feasibility of our strategy, we focused on linking the NF-κB signaling pathway with the inflammatory gene regulatory responses because NF-κB has long been recognized to play a crucial role in inflammation. We first utilized forward engineering (Hybrid Functional Petri Nets) to construct the NF-κB signaling pathway and reverse engineering (Network Components Analysis) to build a gene regulatory network (GRN). Then, we demonstrated that the corresponding IKK profiles can be identified in the GRN and are consistent with the experimental validation of the IKK kinase assay. We found that the time-lapse gene expression of several cytokines and chemokines (TNF-α, IL-1, IL-6, CXCL1, CXCL2 and CCL3) is concordant with the NF-κB activity profile, and these genes have stronger influence strength within the GRN. Such regulatory effects have highlighted the crucial roles of NF-κB signaling in the acute inflammatory response and enhance our understanding of the systemic inflammatory response syndrome.ConclusionWe successfully identified and distinguished the corresponding signaling profiles among three microarray datasets with different stimuli strengths. In our model, the crucial genes of the NF-κB regulatory network were also identified to reflect the biological consequences of inflammation. With the experimental validation, our strategy is thus an effective solution to decipher cross-talk effects when attempting to integrate new kinetic parameters from other signal transduction pathways. The strategy also provides new insight for systems biology modeling to link any signal transduction pathways with the responses of downstream genes of interest.


PLOS ONE | 2012

Serine Protease PRSS23 Is Upregulated by Estrogen Receptor α and Associated with Proliferation of Breast Cancer Cells

Hau-Shien Chan; Shing-Jyh Chang; Tao-Yeuan Wang; Hung-Ju Ko; Yu-Chih Lin; Kuan-Ting Lin; Kuo-Ming Chang; Yung-Jen Chuang

Serine protease PRSS23 is a newly discovered protein that has been associated with tumor progression in various types of cancers. Interestingly, PRSS23 is coexpressed with estrogen receptor α (ERα), which is a prominent biomarker and therapeutic target for human breast cancer. Estrogen signaling through ERα is also known to affect cell proliferation, apoptosis, and survival, which promotes tumorigenesis by regulating the production of numerous downstream effector proteins. In the present study, we aimed to clarify the correlation between and functional implication of ERα and PRSS23 in breast cancer. Analysis of published breast cancer microarray datasets revealed that the gene expression correlation between ERα and PRSS23 is highly significant among all ERα-associated proteases in breast cancer. We then assessed PRSS23 expression in 56 primary breast cancer biopsies and 8 cancer cell lines. The results further confirmed the coexpression of PRSS23 and ERα and provided clinicopathological significance. In vitro assays in MCF-7 breast cancer cells demonstrated that PRSS23 expression is induced by 17β-estradiol-activated ERα through an interaction with an upstream promoter region of PRSS23 gene. In addition, PRSS23 knockdown may suppress estrogen-driven cell proliferation of MCF-7 cells. Our findings imply that PRSS23 might be a critical component of estrogen-mediated cell proliferation of ERα-positive breast cancer cells. In conclusion, the present study highlights the potential for PRSS23 to be a novel therapeutic target in breast cancer research.

Collaboration


Dive into the Yung-Jen Chuang's collaboration.

Top Co-Authors

Avatar

Bor-Sen Chen

National Tsing Hua University

View shared research outputs
Top Co-Authors

Avatar

Chung-Yu Lan

National Tsing Hua University

View shared research outputs
Top Co-Authors

Avatar

Chun-Cheih Chao

National Tsing Hua University

View shared research outputs
Top Co-Authors

Avatar

Che Lin

National Tsing Hua University

View shared research outputs
Top Co-Authors

Avatar

Wen-Ping Hsieh

National Tsing Hua University

View shared research outputs
Top Co-Authors

Avatar

David Shan-Hill Wong

National Tsing Hua University

View shared research outputs
Top Co-Authors

Avatar

Fu-Chen Liu

National Tsing Hua University

View shared research outputs
Top Co-Authors

Avatar

I-Hui Chen

National Tsing Hua University

View shared research outputs
Top Co-Authors

Avatar

Po-Chen Hsu

National Tsing Hua University

View shared research outputs
Top Co-Authors

Avatar

Shih Chi Peng

National Tsing Hua University

View shared research outputs
Researchain Logo
Decentralizing Knowledge