Yung Nien Chang
Johns Hopkins University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yung Nien Chang.
Journal of Biomedical Science | 1995
Yung Nien Chang; Kuan Teh Jeang; Tom Lietman; Gary S. Hayward
Total immediate-early (IE) RNA synthesized after infection with African green monkey cytomegalovirus (SCMV) in the presence of cycloheximide contained a major 2.3-kb mRNA species that acted as template for in vitro synthesis of a single 94-kD nuclear protein. The same IE RNA hybridized predominantly to a 1.8-kb subregion of the 220-kb genome which mapped 1.5 kb to the left of the in vitro transcription start site and TATATAA motif previously associated with the powerful MIE (IE94) enhancer region. However, DNA sequence and S1-mapping analysis of a 5-kb region downstream from the promoter revealed the existence of a far upstream noncoding first exon and four additional spliced exons capable of encoding two alternative protein products with shared N-terminal domains. This region is similar in structure to that of the MIE gene complex of human cytomegalovirus (HCMV), including being highly CpG suppressed. Exons 2, 3, and 4 encode an acidic protein equivalent to the 68-kD IE1 protein (UL123) of HCMV and exons 2, 3, and 5 encode a protein equivalent to the 80-kD IE2 (UL122) DNA-binding protein of HCMV. Transcripts from across the IE2 region were detected within the cycloheximide RNA, but they were present at 10- to 20-fold lower abundance than IE1 transcripts. The proposed 547-codon IE1 (IE94) acidic phosphoprotein of SCMV displays minimal residual homology with the IE1 protein of HCMV, but both associate with metaphase chromosomes and have large C-terminal glutamic-acid-rich domains. In contrast, the proposed 583-codon IE2 protein of SCMV displays extensive amino acid similarity to the HCMV IE2 transcriptional regulatory protein especially within C-terminal domains that are known to play a major role in promoter targeting for both transactivation and negative autoregulation functions. Copyright 1995 S. Karger AG, Basel
Clinical Cancer Research | 2014
Ruey Shyang Soong; Liwen Song; Janson Trieu; Jayne Knoff; Liangmei He; Ya Chea Tsai; Warner K. Huh; Yung Nien Chang; Wen-Fang Cheng; Richard Roden; T. C. Wu; Cornelia L. Trimble; Chien Fu Hung
Purpose: Imiquimod is a Toll-like receptor 7 agonist used topically to treat external genital warts and basal cell carcinoma. We examined the combination of topical imiquimod with intramuscular administration of CRT/E7, a therapeutic human papillomavirus (HPV) vaccine comprised of a naked DNA vector expressing calreticulin fused to HPV16 E7. Experimental Design: Using an orthotopic HPV16 E6/E7+ syngeneic tumor, TC-1, as a model of high-grade cervical/vaginal/vulvar intraepithelial neoplasia, we assessed if combining CRT/E7 vaccination with cervicovaginal deposition of imiquimod could result in synergistic activities promoting immune-mediated tumor clearance. Results: Imiquimod induced cervicovaginal accumulation of activated E7-specific CD8+ T cells elicited by CRT/E7 vaccination. Recruitment was not dependent upon the specificity of the activated CD8+ T cells, but was significantly reduced in mice lacking the IFNγ receptor. Intravaginal imiquimod deposition induced upregulation of CXCL9 and CXCL10 mRNA expression in the genital tract, which are produced in response to IFNγ receptor signaling and attract cells expressing their ligand, CXCR3. The T cells attracted by imiquimod to the cervicovaginal tract expressed CXCR3 as well as CD49a, an integrin involved in homing and retention of CD8+ T cells at mucosal sites. Our results indicate that intramuscular CRT/E7 vaccination in conjunction with intravaginal imiquimod deposition recruits antigen-specific CXCR3+ CD8+ T cells to the genital tract. Conclusions: Several therapeutic HPV vaccination clinical trials using a spectrum of DNA vaccines, including vaccination in concert with cervical imiquimod, are ongoing. Our study identifies a mechanism by which these strategies could provide therapeutic benefit. Our findings support accumulating evidence that manipulation of the tumor microenvironment can enhance the therapeutic efficacy of strategies that induce tumor-specific T cells. Clin Cancer Res; 20(21); 5456–67. ©2014 AACR.
Cell & Bioscience | 2014
Shiwen Peng; Liwen Song; Jayne Knoff; Joshua W. Wang; Yung Nien Chang; Drew Hannaman; T. C. Wu; Ronald D. Alvarez; Richard Roden; Chien Fu Hung
Human papillomavirus (HPV) infections are particularly problematic for HIV + and solid organ transplant patients with compromised CD4+ T cell-dependent immunity as they produce more severe and progressive disease compared to healthy individuals. There are no specific treatments for chronic HPV infection, resulting in an urgent unmet need for a modality that is safe and effective for both immunocompromised and otherwise normal patients with recalcitrant disease. DNA vaccination is attractive because it avoids the risks of administration of live vectors to immunocompromised patients, and can induce potent HPV-specific cytotoxic T cell responses. We have developed a DNA vaccine (pNGVL4a-hCRTE6E7L2) encoding calreticulin (CRT) fused to E6, E7 and L2 proteins of HPV-16, the genotype associated with approximately 90% vaginal, vulvar, anal, penile and oropharyngeal HPV-associated cancers and the majority of cervical cancers. Administration of the DNA vaccine by intramuscular (IM) injection followed by electroporation induced significantly greater HPV-specific immune responses compared to IM injection alone or mixed with alum. Furthermore, pNGVL4a-hCRTE6E7L2 DNA vaccination via electroporation of mice carrying an intravaginal HPV-16 E6/E7-expressing syngeneic tumor demonstrated more potent therapeutic effects than IM vaccination alone. Of note, administration of the DNA vaccine by IM injection followed by electroporation elicited potent E6 and E7-specific CD8+ T cell responses and antitumor effects despite CD4+ T cell-depletion, although no antibody response was detected. While CD4+ T cell-depletion did reduce the E6 and E7-specific CD8+ T cell response, it remained sufficient to prevent subcutaneous tumor growth and to eliminate circulating tumor cells in a model of metastatic HPV-16+ cancer. Thus, the antibody response was CD4-dependent, whereas CD4+ T cell help enhanced the E6/E7-specific CD8+ T cell immunity, but was not required. Taken together, our data suggest that pNGVL4a-hCRTE6E7L2 DNA vaccination via electroporation warrants testing in otherwise healthy patients and those with compromised CD4+ T cell immunity to treat HPV-16-associated anogenital disease and cancer.
PLOS Pathogens | 2015
Joshua W. Wang; Rosie Jiang; Shiwen Peng; Yung Nien Chang; Chien Fu Hung; Richard Roden
Persistent papillomas developed in ~10% of out-bred immune-competent SKH-1 mice following MusPV1 challenge of their tail, and in a similar fraction the papillomas were transient, suggesting potential as a model. However, papillomas only occurred in BALB/c or C57BL/6 mice depleted of T cells with anti-CD3 antibody, and they completely regressed within 8 weeks after depletion was stopped. Neither CD4+ nor CD8+ T cell depletion alone in BALB/c or C57BL/6 mice was sufficient to permit visible papilloma formation. However, low levels of MusPV1 were sporadically detected by either genomic DNA-specific PCR analysis of local skin swabs or in situ hybridization of the challenge site with an E6/E7 probe. After switching to CD3+ T cell depletion, papillomas appeared upon 14/15 of mice that had been CD4+ T cell depleted throughout the challenge phase, 1/15 of CD8+ T cell depleted mice, and none in mice without any prior T cell depletion. Both control animals and those depleted with CD8-specific antibody generated MusPV1 L1 capsid-specific antibodies, but not those depleted with CD4-specific antibody prior to T cell depletion with CD3 antibody. Thus, normal BALB/c or C57BL/6 mice eliminate the challenge dose, whereas infection is suppressed but not completely cleared if their CD4 or CD8 T cells are depleted, and recrudescence of MusPV1 is much greater in the former following treatment with CD3 antibody, possibly reflecting their failure to generate capsid antibody. Systemic vaccination of C57BL/6 mice with DNA vectors expressing MusPV1 E6 or E7 fused to calreticulin elicits potent CD8 T cell responses and these immunodominant CD8 T cell epitopes were mapped. Adoptive transfer of a MusPV1 E6-specific CD8+ T cell line controlled established MusPV1 infection and papilloma in RAG1-knockout mice. These findings suggest the potential of immunotherapy for HPV-related disease and the importance of host immunogenetics in the outcome of infection.
Journal of Virology | 2017
Rosie Jiang; Joshua W. Wang; Shiwen Peng; Tsui Chin Huang; Chenguang Wang; Fabiana Cannella; Yung Nien Chang; Raphael P. Viscidi; Simon R. Best; Chien Fu Hung; Richard Roden
ABSTRACT Mus musculus papillomavirus 1 (MmuPV1/MusPV1) induces persistent papillomas in immunodeficient mice but not in common laboratory strains. To facilitate the study of immune control, we sought an outbred and immunocompetent laboratory mouse strain in which persistent papillomas could be established. We found that challenge of SKH1 mice (Crl:SKH1-Hrhr) with MmuPV1 by scarification on their tail resulted in three clinical outcomes: (i) persistent (>2-month) papillomas (∼20%); (ii) transient papillomas that spontaneously regress, typically within 2 months (∼15%); and (iii) no visible papillomas and viral clearance (∼65%). SKH1 mice with persistent papillomas were treated by using a candidate preventive/therapeutic naked-DNA vaccine that expresses human calreticulin (hCRT) fused in frame to MmuPV1 E6 (mE6) and mE7 early proteins and residues 11 to 200 of the late protein L2 (hCRTmE6/mE7/mL2). Three intramuscular DNA vaccinations were delivered biweekly via in vivo electroporation, and both humoral and CD8 T cell responses were mapped and measured. Previously persistent papillomas disappeared within 2 months after the final vaccination. Coincident virologic clearance was confirmed by in situ hybridization and a failure of disease to recur after CD3 T cell depletion. Vaccination induced strong mE6 and mE7 CD8+ T cell responses in all mice, although they were significantly weaker in mice that initially presented with persistent warts than in those that spontaneously cleared their infection. A human papillomavirus 16 (HPV16)-targeted version of the DNA vaccine also induced L2 antibodies and protected mice from vaginal challenge with an HPV16 pseudovirus. Thus, MmuPV1 challenge of SKH1 mice is a promising model of spontaneous and immunotherapy-directed clearances of HPV-related disease. IMPORTANCE High-risk-type human papillomaviruses (hrHPVs) cause 5% of all cancer cases worldwide, notably cervical, anogenital, and oropharyngeal cancers. Since preventative HPV vaccines have not been widely used in many countries and do not impact existing infections, there is considerable interest in the development of therapeutic vaccines to address existing disease and infections. The strict tropism of HPV requires the use of animal papillomavirus models for therapeutic vaccine development. However, MmuPV1 failed to grow in common laboratory strains of mice with an intact immune system. We show that MmuPV1 challenge of the outbred immunocompetent SKH1 strain produces both transient and persistent papillomas and that vaccination of the mice with a DNA expressing an MmuPV1 E6E7L2 fusion with calreticulin can rapidly clear persistent papillomas. Furthermore, an HPV16-targeted version of the DNA can protect against vaginal challenge with HPV16, suggesting the promise of this approach to both prevent and treat papillomavirus-related disease.
Cancer immunology research | 2018
Yi Hsin Lin; Ming Chieh Yang; Ssu Hsueh Tseng; Rosie Jiang; Andrew Yang; Emily Farmer; Shiwen Peng; Talia Henkle; Yung Nien Chang; Chien Fu Hung; T. C. Wu
A preclinical mouse model of spontaneous, HPV+ oral tumors was generated. Sleeping beauty transposase system-mediated oncogene transfection was assisted by electroporation. This model allowed for the evaluation of disease intervention efficacy and analysis of tumor cell migration. Human papillomavirus type 16 (HPV16) is the etiologic factor for cervical cancer and a subset of oropharyngeal cancers. Although several prophylactic HPV vaccines are available, no effective therapeutic strategies to control active HPV diseases exist. Tumor implantation models are traditionally used to study HPV-associated buccal tumors. However, they fail to address precancerous phases of disease progression and display tumor microenvironments distinct from those observed in patients. Previously, K14-E6/E7 transgenic mouse models have been used to generate spontaneous tumors. However, the rate of tumor formation is inconsistent, and the host often develops immune tolerance to the viral oncoproteins. We developed a preclinical, spontaneous, HPV16+ buccal tumor model using submucosal injection of oncogenic plasmids expressing HPV16-E6/E7, NRasG12V, luciferase, and sleeping beauty (SB) transposase, followed by electroporation in the buccal mucosa. We evaluated responses to immunization with a pNGVL4a-CRT/E7(detox) therapeutic HPV DNA vaccine and tumor cell migration to distant locations. Mice transfected with plasmids encoding HPV16-E6/E7, NRasG12V, luciferase, and SB transposase developed tumors within 3 weeks. We also found transient anti-CD3 administration is required to generate tumors in immunocompetent mice. Bioluminescence signals from luciferase correlated strongly with tumor growth, and tumors expressed HPV16-associated markers. We showed that pNGVL4a-CRT/E7(detox) administration resulted in antitumor immunity in tumor-bearing mice. Lastly, we demonstrated that the generated tumor could migrate to tumor-draining lymph nodes. Our model provides an efficient method to induce spontaneous HPV+ tumor formation, which can be used to identify effective therapeutic interventions, analyze tumor migration, and conduct tumor biology research. Cancer Immunol Res; 6(3); 305–19. ©2018 AACR.
Archive | 1991
Yung Nien Chang; Gary S. Hayward; S. D. Hayward
The Zta (BZLF1) transactivator is capable of reactivating lytic cycle expression when introducted into latently infected B-cells (1) and hence represents the pivotal viral protein in the reactivation process. In earlier studies we utilized a bacterially expressed Zta in DNAseI footprinting assays to identify six Zta binding sites in the BamHI-H divergent promoter (2). The sequences protected by Zta binding were TGTGTAA, TGAGCAA, TGTGCAA and TGTGTCA (3 copies). These sites resemble the AP-1 binding site (TGAGTCA) for the Jun/Fos cellular transcription factors and Zta binds equally well to an AP-1 site as a ZRE site (2,3). The sites identified not only bind Zta but when cloned into a normally non-responsive target, for example TK-CAT or A10-CAT, confer Zta responsiveness on these targets (2).
Journal of Virology | 1991
Richard F. Ambinder; Mary Ann Mullen; Yung Nien Chang; Gary S. Hayward; S. D. Hayward
Journal of Virology | 1990
Yung Nien Chang; Dennis L Y Dong; Gary S. Hayward; S D Hayward
Journal of Virology | 1991
Marie C. Pizzorno; Mary Ann Mullen; Yung Nien Chang; Gary S. Hayward