Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yung-Zun Cho is active.

Publication


Featured researches published by Yung-Zun Cho.


Nuclear Engineering and Technology | 2011

PYROPROCESSING TECHNOLOGY DEVELOPMENT AT KAERI

Han-Soo Lee; Geun-Il Park; Kweon-Ho Kang; Jin-Mok Hur; Jeong-Guk Kim; Do-Hee Ahn; Yung-Zun Cho; Eung Ho Kim

Pyroprocessing technology was developed in the beginning for metal fuel treatment in the US in the 1960s. The conventional aqueous process, such as PUREX, is not appropriate for treating metal fuel. Pyroprocessing technology has advantages over the aqueous process: less proliferation risk, treatment of spent fuel with relatively high heat and radioactivity, compact equipment, etc. The addition of an oxide reduction process to the pyroprocessing metal fuel treatment enables handling of oxide spent fuel, which draws a potential option for the management of spent fuel from the PWR. In this context, KAERI has been developing pyroprocessing technology to handle the oxide spent fuel since the 1990s. This paper describes the current status of pyroprocessing technology development at KAERI from the head-end process to the waste treatment. A unit process with various scales has been tested to produce the design data associated with the scale up. A performance test of unit processes integration will be conducted at the PRIDE facility, which will be constructed by early 2012. The PRIDE facility incorporates the unit processes all together in a cell with an Ar environment. The purpose of PRIDE is to test the processes for unit process performance, operability by remote equipment, the integrity of the unit processes, process monitoring, Ar environment system operation, and safeguards related activities. The test of PRIDE will be promising for further pyroprocessing technology development.


Nuclear Engineering and Technology | 2010

STATUS OF PYROPROCESSING TECHNOLOGY DEVELOPMENT IN KOREA

Kee-Chan Song; Han-Soo Lee; Jin-Mok Hur; Jeong-Guk Kim; Do-Hee Ahn; Yung-Zun Cho

The Korea Atomic Energy Research Institute (KAERI) has been developing pyroprocessing technology for recycling useful resources from spent fuel since 1997. The process includes pretreatment, electroreduction, electrorefining, electrowinning, and a waste salt treatment system. This paper briefly addresses unit processes and related innovative technologies. As for the electroreduction step, a stainless steel mesh basket was applied for adaption of granules of uranium oxide. This basket was designed for ready handling and transfer of feed material. A graphite cathode was used for the continuous collection of uranium dendrite in the electrorefining system. This enhances the throughput of the electrorefiner. A particular mesh type stirrer was designed to inhibit uranium spill-over at the liquid Cd crucible. A residual actinide recovery system was also tested to recover TRU tracer. In order to reduce the waste volume, a crystallization method is employed for Cs and Sr removal. Experiments on the unit processes were tested successfully, and based on the results, engineering-scale equipment has been designed for the PRIDE (PyRoprocess Integrated inactive DEmonstration facility).


Advances in Materials Science and Engineering | 2015

Fabrication of UO2 Porous Pellets on a Scale of 30 kg-U/Batch at the PRIDE Facility

Sang-Chae Jeon; Jae-Won Lee; Juho Lee; Sang-Jun Kang; Kwang-Yun Lee; Yung-Zun Cho; Do-Hee Ahn; Kee-Chan Song

In the pyroprocess integrated inactive demonstration (PRIDE) facility at the Korea Atomic Energy Research Institute (KAERI), UO2 porous pellets were fabricated as a feed material for electrolytic reduction on an engineering scale of 30 kg-U/batch. To increase the batch size, we designed and modified the corresponding equipment for unit processes based on ceramic processing. In the course of pellet fabrication, the correlation between the green density and sintered density was investigated within a compaction pressure range of 106–206 MPa, in terms of the optimization of processing parameters. Analysis of the microstructures of the produced UO2 porous pellets suggested that the pellets were suitable for feed material in the subsequent electrolytic reduction process in pyroprocessing. This research puts forth modifications to the process and equipment to allow the safe mass production of UO2 porous pellets; we believe these results will have immense practical interest.


Korean Journal of Chemical Engineering | 2016

Electrolytic reduction rate of porous UO2 pellets

Min Ku Jeon; Eun-Young Choi; Sung-Wook Kim; Sang-Kwon Lee; Hyun Woo Kang; Sun Seok Hong; Jeong Lee; Jin-Mok Hur; Sang-Chae Jeon; Ju Ho Lee; Yung-Zun Cho; Do-Hee Ahn

The electrolytic reduction rate of porous UO2 pellets in a LiCl salt was investigated for various applied charges. The degree of reduction (α) value was evaluated from the ratios of cross-sectional areas of the reduced and oxide parts. An analysis of the experimental results revealed that the first-order reaction model is the best geometry function to describe the reduction reaction. An electrolytic reduction rate equation was proposed using the first-order model, although it was available in a limited region of (0≤α≤0.56). A power law based reaction rate equation was also suggested for the whole range of α, and the reaction time for a complete reduction, estimated using the power law equation, was confirmed through the experimental results. Changes in the Li-Li2O concentration around the reduced pellets for various applied charges were also measured, which increased up to 23 wt% with increasing α.


Journal of Nuclear Science and Technology | 2013

Study on the phosphate reaction characteristics of lanthanide chlorides in molten salt with operating conditions

Tae-Kyo Lee; Yung-Zun Cho; Hee-Chul Eun; Sung-Mo Son; Hwan-Seo Park; Geun-Il Park; Taek-Sung Hwang

A minimization of waste salt is one of the most important issues for the optimization of pyroprocessing. The separation of fission products in waste salts and the reuse of purified waste salt are promising strategies for minimizing the waste salt amounts. The phosphate precipitation of lanthanide is currently being considered for eutectic (LiCl–KCl) waste salt purification. In this research, the effects of molten salt temperature (400–550 °C) and reaction time (max. 180 min) upon conversion into the phosphate of lanthanides was investigated using 1 and 3 kg of eutectic salt. The conversion efficiency of lanthanides to molten salt-insoluble precipitates and phosphates was increased with an increase in molten salt temperature and operating time until it attained a specific temperature and time. K3PO4 as a precipitant was more favorable than Li3PO4 in terms of reactivity. To obtain over a 99% overall conversion efficiency, about 30 min was required in the case of using K3PO4 at 450 °C, but about 120 min in the case of using Li3PO4 at 550 °C. The lanthanide precipitates formed by a reaction with phosphate were a mixture of monoclinic structures, usually representing a polyhedron structure, and a tetragonal structure, representing a platelet structure.


Nuclear Engineering and Technology | 2013

EUTECTIC(LiCl-KCl) WASTE SALT TREATMENT BY SEQUENCIAL SEPARATION PROCESS

Yung-Zun Cho; Tae-Kyo Lee; Jung-Hun Choi; Hee-Chul Eun; Hwan-Seo Park; Geun-Il Park

The sequential separation process, composed of an oxygen sparging process for separating lanthanides and a zone freezing process for separating Group I and II fission products, was evaluated and tested with a surrogate eutectic waste salt generated from pyroprocessing of used metal nuclear fuel. During the oxygen sparging process, the used lanthanide chlorides (Y, Ce, Pr and Nd) were converted into their sat-insoluble precipitates, over 99.5% at 800 °C; however, Group I (Cs) and II (Sr) chlorides were not converted but remained within the eutectic salt bed. In the next process, zone freezing, both precipitation of lanthanide precipitates and concentration of Group I/II elements were preformed. The separation efficiency of Cs and Sr increased with a decrease in the crucible moving speed, and there was little effect of crucible moving speed on the separation efficiency of Cs and Sr in the range of a 3.7 – 4.8 mm/hr. When assuming a 60% eutectic salt reuse rate, over 90% separation efficiency of Cs and Sr is possible, but when increasing the eutectic salt reuse rate to 80%, a separation efficiency of about 82 – 86 % for Cs and Sr was estimated.


Journal of Hazardous Materials | 2017

A new route to the stable capture and final immobilization of radioactive cesium

Jae Hwan Yang; Ahreum Han; Joo Young Yoon; Hwan-Seo Park; Yung-Zun Cho

Radioactive Cs released from damaged fuel materials in the event of nuclear accidents must be controlled to prevent the spreading of hazardous Cs into the environment. This study describes a simple and novel process to safely manage Cs gas by capturing it within ceramic filters and converting it into monolithic waste forms. The results of Cs trapping tests showed that CsAlSiO4 was a reaction product of gas-solid reactions between Cs gas and our ceramic filters. Monolithic waste forms were readily prepared from the Cs-trapping filters by the addition of a glass frit followed by thermal treatment at 1000°C for 3h. Major findings revealed that the Cs-trapping filters could be added up to 50wt% to form durable monoliths. In 30-50wt% of waste fraction, CsAlSiO4 was completely converted to pollucite (CsAlSi2O6), which is a potential phase for radioactive Cs due to its excellent thermal and chemical stability. A static leaching test for 28 d confirmed the excellent chemical resistance of the pollucite structure, with a Cs leaching rate as low as 7.21×10-5gm-2/d. This simple scheme of waste processing promises a new route for radioactive Cs immobilization by synthesizing pollucite-based monoliths.


Journal of Nuclear Science and Technology | 2017

Al2O3-containing silver phosphate glasses as hosting matrices for radioactive iodine

Jae Hwan Yang; Hwan-Seo Park; Yung-Zun Cho

ABSTRACT Al2O3-containing silver phosphate glasses were synthesized to investigate the feasibility of phosphate glasses for the immobilization of radioactive iodine (129I) present in spent nuclear fuel. Characterizations were performed by X-ray diffraction, Fourier transformed infrared spectroscopy, and scanning electron microscopy coupled with energy dispersive spectroscopy to examine structures, bonding properties, surface morphology, and elemental distribution of the synthesized glasses. The principal results showed that iodine became more strongly immobilized in the phosphate glasses with the addition of Al2O3, which was confirmed by the decrease of iodine leaching rates with approximately one order of magnitude. The present study would be helpful to decide whether Al2O3-containing silver phosphate glasses could be used as a candidate matrix to incorporate 129I.


Nuclear Technology | 2018

Estimation on Feeding Portions of Slitting Decladded Fuel Fragments to Electrolytic Reduction Process

Jae Won Lee; Do-Youn Lee; Young-Soon Lee; Jae-Hwan Yang; Geun-Il Park; Jung-Won Lee; Hyoung-Mun Kwon; Yung-Zun Cho

Abstract Performance tests of mechanical decladding technology for estimating the feeding portions of the recovered fuel fragments to an electrolytic reduction process were conducted in terms of the fuel rod burnups of 27.3 to 65.7 GWd/tonne uranium (tU) for the used pressurized water reactor nuclear fuel. The decladding efficiencies with fuel burnups were quantitatively obtained from slitting decladding tests. Based on the average fuel rod burnups, fuel rods with an average burnup of up to 52.3 GWd/tU showed above 99%, but higher burnup fuels of above 54.9 GWd/tU were below 97.52% in the decladding efficiency. It was interpreted that variations in decladding efficiency with fuel burnups were closely linked to the opening characteristics of the gap between the pellets and cladding. However, the fuel fragment size distribution after slitting decladding has little difference in fuel burnup changes between 34.8 and 55.4 GWd/tU. Hence, feeding portions of the fuel fragments from an assembly basis by using the decladding efficiency and recovered fragment size distribution data were estimated with burnup variations of 35 to 52.5 GWd/tU.


Science and Technology of Nuclear Installations | 2017

Engineering Design of a Voloxidizer with a Double Reactor for the Hull Separation of Spent Nuclear Fuel Rods

Young-Hwan Kim; Yung-Zun Cho; Jae Won Lee; Ju-Hoo Lee; Sang-Chae Jeon; Do-Hee Ahn

A voloxidizer with a double reactor capable of processing several tens of kilograms of HM/batch of nuclear spent fuel has been developed for the decladding and voloxidation of rod-cuts into hulls and pellets through the conversion of UO2 pellets to U3O8 powder. In this study, we optimized the engineering design of this voloxidizer to improve its hull-recovery ratio. First, we tested the oxidation performance of the device prototype and evaluated the effectiveness of various mechanical and chemical voloxidizing methods. On the basis of the results, we selected the screw-and-rotation method for the double rotary drum. Next, we derived a theoretical equation for calculating the optimal reactor volume for various rod-cut weights and lengths and then validated the equation using centimeter-scale acryl reactors and hulls. Subsequently, we modularized the main components such as the heater, utility, motor, reactor, valve, and structure. The double reactor was subject to preliminary separation tests of hulls and powder. Moreover, the hull-separation performance of the voloxidizer reactor was tested at a loading of 50 kg HM/batch. Finally, the remote assembling and disassembling possibility of the modules were experimentally optimized.

Collaboration


Dive into the Yung-Zun Cho's collaboration.

Top Co-Authors

Avatar

Hee-Chul Eun

University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Tae-Kyo Lee

Chungnam National University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge