Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yunglin Gazes is active.

Publication


Featured researches published by Yunglin Gazes.


Brain Imaging and Behavior | 2009

The impact of age-related changes on working memory functional activity.

Jason Steffener; Adam M. Brickman; Brian C. Rakitin; Yunglin Gazes; Yaakov Stern

This work investigated associations of age-related brain atrophy and functional neural networks identified using multivariate analyses of BOLD fMRI data in young and elder participants (young, N = 37; mean age = 25; elders, N = 15; mean age = 74). Two networks were involved in retaining increasing loads of verbal information in working memory. Network utilizations were used to test associations between function and indices of grey matter volume changes using voxel based morphometry. Global changes in brain volume were not associated with the secondary network. Lower regional grey matter volume in the left pre-central gyrus within the primary network was associated with increased secondary network utilization independent of age group. Decreased regional grey matter volume was associated with increased age only in the elders. Increased secondary network expression was associated with increased slope of reaction times across memory load, in the elders. These results support the theory of neural compensation, that elder participants recruit additional neural resources to maintain task performance in the face of age-related decreases in regional grey matter volume.


Human Brain Mapping | 2014

Behavioral and neural correlates of imagined walking and walking-while-talking in the elderly.

Helena M. Blumen; Roee Holtzer; Lucy L. Brown; Yunglin Gazes; Joe Verghese

Cognition is important for locomotion and gait decline increases the risk for morbidity, mortality, cognitive decline, and dementia. Yet, the neural correlates of gait are not well established, because most neuroimaging methods cannot image the brain during locomotion. Imagined gait protocols overcome this limitation. This study examined the behavioral and neural correlates of a new imagined gait protocol that involved imagined walking (iW), imagined talking (iT), and imagined walking‐while‐talking (iWWT). In Experiment 1, 82 cognitively‐healthy older adults (M = 80.45) walked (W), iW, walked while talking (WWT) and iWWT. Real and imagined walking task times were strongly correlated, particularly real and imagined dual‐task times (WWT and iWWT). In Experiment 2, 33 cognitively‐healthy older adults (M = 73.03) iW, iT, and iWWT during functional magnetic resonance imaging. A multivariate Ordinal Trend (OrT) Covariance analysis identified a pattern of brain regions that: (1) varied as a function of imagery task difficulty (iW, iT and iWWT), (2) involved cerebellar, precuneus, supplementary motor and other prefrontal regions, and (3) were associated with kinesthetic imagery ratings and behavioral performance during actual WWT. This is the first study to compare the behavioral and neural correlates of imagined gait in single and dual‐task situations, an issue that is particularly relevant to elderly populations. These initial findings encourage further research and development of this imagined gait protocol as a tool for improving gait and cognition among the elderly. Hum Brain Mapp 35:4090–4104, 2014.


Brain Research | 2012

Task difficulty modulates young - old differences in network expression

Yaakov Stern; Brian C. Rakitin; Christian G. Habeck; Yunglin Gazes; Jason Steffener; Arjun Kumar; Aaron Reuben

The extent of task-related fMRI activation can vary as a function of task difficulty. Also the efficiency or capacity of the brain networks underlying task performance can change with aging. We asked whether the expression of a network underlying task performance would differ as a function of task demand in old and young individuals. 26 younger and 23 older healthy adults performed a delayed item recognition task that used the response signal method to parametrically manipulate the extrinsic difficulty of the task by imposing five different deadlines for recognition response. Both age groups showed a speed-accuracy trade-off, but the younger group achieved greater discriminability at the longer deadlines. We identified a spatial pattern of fMRI activation during the probe phase whose expression increased as the response deadline shortened and the task became more difficult. This pattern was expressed to a greater degree by the old group at the long deadlines, when the task was easiest. By contrast, this pattern was expressed to a greater degree by the younger group at the short deadlines, when the task was hardest. This suggests reduced efficiency and capacity of this network in older subjects. These findings suggest that neuroimaging studies comparing task-related activation across groups with different cognitive abilities must be interpreted in light of the relative difficulty of the task for each group.


Psychiatry Research-neuroimaging | 2014

Characterizing the normative profile of 18F-FDG PET brain imaging: sex difference, aging effect, and cognitive reserve.

Hiroshi Yoshizawa; Yunglin Gazes; Yaakov Stern; Yoko Miyata; Shinichiro Uchiyama

The aim of this study was to investigate findings of positron emission tomography with 18F-fluorodeoxyglucose (18F-FDG PET) in normal subjects to clarify the effects of sex differences, aging, and cognitive reserve on cerebral glucose metabolism. Participants comprised 123 normal adults who underwent 18F-FDG PET and a neuropsychological battery. We used statistical parametric mapping (SPM8) to investigate sex differences, and aging effects. The effects of cognitive reserve on 18F-FDG uptake were investigated using years of education as a proxy. Finally, we studied the effect of cognitive reserve on the recruitment of glucose metabolism in a memory task by dichotomizing the data according to educational level. Our results showed that the overall cerebral glucose metabolism in females was higher than that in males, whereas male participants had higher glucose metabolism in the bilateral inferior temporal gyri and cerebellum than females. Age-related hypometabolism was found in anterior regions, including the anterior cingulate gyrus. These areas are part of the attentional system, which may decline with aging even in healthy elderly individuals. Highly educated subjects revealed focal hypermetabolism in the right hemisphere and lower recruitment of glucose metabolism in memory tasks. This phenomenon is likely a candidate for a neural substrate of cognitive reserve.


Journal of Cognitive Neuroscience | 2008

Aging does not affect brain patterns of repetition effects associated with perceptual priming of novel objects

Anja Soldan; Yunglin Gazes; H. John Hilton; Yaakov Stern

This study examined how aging affects the spatial patterns of repetition effects associated with perceptual priming of unfamiliar visual objects. Healthy young (n = 14) and elderly adults (n = 13) viewed four repetitions of structurally possible and impossible figures while being scanned with blood oxygenation level-dependent functional magnetic resonance imaging. Although explicit recognition memory for the figures was reduced in the elder subjects, repetition priming did not differ across the two age groups. Using multivariate linear modeling, we found that the spatial networks of regions that demonstrated repetition-related increases and decreases in activity were identical in both age groups, although there was a trend for smaller magnitude repetition effects in these networks in the elder adults for objects that had been repeated thrice. Furthermore, repetition-related reductions in activity in the left inferior frontal cortex for possible objects correlated with repetition-related facilitation in reaction time across both young and elder subjects. Repetition-related increases of an initially negative response were observed for both object types in both age groups in parts of the default network, suggesting that less attention was required for processing repeated stimuli. These findings extend prior studies using verbal and semantic picture priming tasks and support the view that perceptual repetition priming remains intact in later adulthood because the same spatial networks of regions continue to show repetition-related neural plasticity across the adult life span.


Neuropsychologia | 2012

Age differences of multivariate network expressions during task-switching and their associations with behavior.

Yunglin Gazes; Brian C. Rakitin; Christian G. Habeck; Jason Steffener; Yaakov Stern

The effect of aging on functional network activation associated with task-switching was examined in 24 young (age=25.2±2.73 years) and 23 older adults (age=65.2±2.65 years) using functional magnetic resonance imaging (fMRI). The study goals were to (1) identify a network shared by both young and older adults, (2) identify additional networks in each age group, and (3) examine the relationship between the networks identified and behavioral performance in task-switching. Ordinal trend covariance analysis was used to identify the networks, which takes advantage of increasing activation with greater task demand to isolate the network of regions recruited by task-switching. Two task-related networks were found: a shared network that was strongly expressed by both young and older adults and a second network identified in the young data that was residualized from the shared network. Both networks consisted of regions associated with task-switching in previous studies including the middle frontal gyrus, the precentral gyrus, the anterior cingulate, and the superior parietal lobule. Not only was pattern expression of the shared network associated with reaction time in both age groups, the difference in the pattern expression across task conditions (task-switch minus single-task) was also correlated with the difference in RT across task conditions. On the contrary, expression of the young-residual network showed a large age effect such that older adults do not increase expression of the network with greater task demand as young adults do and correlation between expression and accuracy was significant only for young adults. Thus, while a network related to RT is preserved in older adults, a different network related to accuracy is disrupted.


Annals of Neurology | 2016

White matter integrity as a mediator in the relationship between dietary nutrients and cognition in the elderly

Yian Gu; Robert S. Vorburger; Yunglin Gazes; Christian G. Habeck; Yaakov Stern; Jose A. Luchsinger; Jennifer J. Manly; Nicole Schupf; Richard Mayeux; Adam M. Brickman

We examined the association of nutrient intake with microstructural white matter integrity, and the role of white matter integrity in the association between nutrient consumption and cognition.


Brain Research | 2010

Neural mechanisms of repetition priming of familiar and globally unfamiliar visual objects

Anja Soldan; Christian G. Habeck; Yunglin Gazes; Yaakov Stern

Functional magnetic resonance imaging (fMRI) studies have shown that repetition priming of visual objects is typically accompanied by a reduction in activity for repeated compared to new stimuli (repetition suppression). However, the spatial distribution and direction (suppression vs. enhancement) of neural repetition effects can depend on the pre-experimental familiarity of stimuli. The first goal of this study was to further probe the link between repetition priming and repetition suppression/enhancement for visual objects and how this link is affected by stimulus familiarity. A second goal was to examine whether priming of familiar and unfamiliar objects following a single stimulus repetition is supported by the same processes as priming following multiple repetitions within the same task. In this endeavor, we examined both between and within-subject correlations between priming and fMRI repetition effects for familiar and globally unfamiliar visual objects during the first and third repetitions of the stimuli. We included reaction time of individual trials as a linear regressor to identify brain regions whose repetition effects varied with response facilitation on a trial-by-trial basis. The results showed that repetition suppression in bilateral fusiform gyrus, was selectively correlated with priming of familiar objects that had been repeated once, likely reflecting facilitated perceptual processing or the sharpening of perceptual representations. Priming during the third repetition was correlated with repetition suppression in prefrontal and parietal areas for both familiar and unfamiliar stimuli, possibly reflecting a shift from top-down controlled to more automatic processing that occurs for both item types.


NeuroImage | 2016

White matter tract covariance patterns predict age-declining cognitive abilities

Yunglin Gazes; F. DuBois Bowman; Qolamreza R. Razlighi; Deirdre O'Shea; Yaakov Stern; Christian G. Habeck

UNLABELLED Previous studies investigating the relationship of white matter (WM) integrity to cognitive abilities and aging have either focused on a global measure or a few selected WM tracts. Ideally, contribution from all of the WM tracts should be evaluated at the same time. However, the high collinearity among WM tracts precludes systematic examination of WM tracts simultaneously without sacrificing statistical power due to stringent multiple-comparison corrections. Multivariate covariance techniques enable comprehensive simultaneous examination of all WM tracts without being penalized for high collinearity among observations. METHOD In this study, Scaled Subprofile Modeling (SSM) was applied to the mean integrity of 18 major WM tracts to extract covariance patterns that optimally predicted four cognitive abilities (perceptual speed, episodic memory, fluid reasoning, and vocabulary) in 346 participants across ages 20 to 79years old. Using expression of the covariance patterns, age-independent effects of white matter integrity on cognition and the indirect effect of WM integrity on age-related differences in cognition were tested separately, but inferences from the indirect analyses were cautiously made given that cross-sectional data set was used in the analysis. RESULTS A separate covariance pattern was identified that significantly predicted each cognitive ability after controlling for age except for vocabulary, but the age by WM covariance pattern interaction was not significant for any of the three abilities. Furthermore, each of the patterns mediated the effect of age on the respective cognitive ability. A distinct set of WM tracts was most influential in each of the three patterns. The WM covariance pattern accounting for fluid reasoning showed the most number of influential WM tracts whereas the episodic memory pattern showed the least number. CONCLUSION Specific patterns of WM tracts make significant contributions to the age-related differences in perceptual speed, episodic memory, and fluid reasoning but not vocabulary. Other measures of brain health will need to be explored to reveal the major influences on the vocabulary ability.


Behavioural Brain Research | 2010

Performance degradation and altered cerebral activation during dual performance: evidence for a bottom-up attentional system

Yunglin Gazes; Brian C. Rakitin; Jason Steffener; Christian G. Habeck; Brady Butterfield; Claude Ghez; Yaakov Stern

Subjects performed a continuous tracking concurrently with an intermittent visual detection task to investigate the existence of competition for a capacity-limited stage (a bottleneck stage). Both perceptual and response-related processes between the two tasks were examined behaviorally and the changes in brain activity during dual-tasking relative to single-task were also assessed. Tracking error and joystick speed were analyzed for changes that were time-locked to visual detection stimuli. The associated brain activations were examined with functional magnetic resonance imaging (fMRI). These were analyzed using mixed block and event-related models to tease apart sustained neural activity and activations associated with individual events. Increased tracking error and decreased joystick speed were observed relative to the target stimuli in the dual-task condition only, which supports the existence of a bottleneck stage in response-related processes. Neuroimaging data show decreased activation to target relative to non-target stimuli in the dual-task condition in the left primary motor and somatosensory cortices controlling right-hand tracking, consistent with the tracking interference observed in behavioral data. Furthermore, the ventral attention system, rather than the dorsal attention system, was found to mediate task coordination between tracking and visual detection.

Collaboration


Dive into the Yunglin Gazes's collaboration.

Top Co-Authors

Avatar

Yaakov Stern

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge