Yungui Wang
Zhejiang University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yungui Wang.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Shuangli Mi; Jun Lu; Miao Sun; Zejuan Li; Hao Zhang; Mary Beth Neilly; Yungui Wang; Zhijian Qian; Jie Jin; Yanming Zhang; Stefan K. Bohlander; Michelle M. Le Beau; Richard A. Larson; Todd R. Golub; Janet D. Rowley; Jianjun Chen
Acute lymphoblastic leukemia (ALL) is the most common childhood cancer, whereas acute myeloid leukemia (AML) is the most common acute leukemia in adults. In general, ALL has a better prognosis than AML. To understand the distinct mechanisms in leukemogenesis between ALL and AML and to identify markers for diagnosis and treatment, we performed a large-scale genome-wide microRNA (miRNA, miR) expression profiling assay and identified 27 miRNAs that are differentially expressed between ALL and AML. Among them, miR-128a and -128b are significantly overexpressed, whereas let-7b and miR-223 are significantly down-regulated in ALL compared with AML. They are the most discriminatory miRNAs between ALL and AML. Using the expression signatures of a minimum of two of these miRNAs resulted in an accuracy rate of >95% in the diagnosis of ALL and AML. The differential expression patterns of these four miRNAs were validated further through large-scale real-time PCR on 98 acute leukemia samples covering most of the common cytogenetic subtypes, along with 10 normal control samples. Furthermore, we found that overexpression of miR-128 in ALL was at least partly associated with promoter hypomethylation and not with an amplification of its genomic locus. Taken together, we showed that expression signatures of as few as two miRNAs could accurately discriminate ALL from AML, and that epigenetic regulation might play an important role in the regulation of expression of miRNAs in acute leukemias.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Zejuan Li; Jun Lu; Miao Sun; Shuangli Mi; Hao Zhang; Roger T. Luo; Ping Chen; Yungui Wang; Ming Yan; Zhijian Qian; Mary Beth Neilly; Jie Jin; Yanming Zhang; Stefan K. Bohlander; Dong-Er Zhang; Richard A. Larson; Michelle M. Le Beau; Michael J. Thirman; Todd R. Golub; Janet D. Rowley; Jianjun Chen
MicroRNAs (miRNAs) are postulated to be important regulators in cancers. Here, we report a genome-wide miRNA expression analysis in 52 acute myeloid leukemia (AML) samples with common translocations, including t(8;21)/AML1(RUNX1)-ETO(RUNX1T1), inv(16)/CBFB-MYH11, t(15;17)/PML-RARA, and MLL rearrangements. Distinct miRNA expression patterns were observed for t(15;17), MLL rearrangements, and core-binding factor (CBF) AMLs including both t(8;21) and inv(16) samples. Expression signatures of a minimum of two (i.e., miR-126/126*), three (i.e., miR-224, miR-368, and miR-382), and seven (miR-17–5p and miR-20a, plus the aforementioned five) miRNAs could accurately discriminate CBF, t(15;17), and MLL-rearrangement AMLs, respectively, from each other. We further showed that the elevated expression of miR-126/126* in CBF AMLs was associated with promoter demethylation but not with amplification or mutation of the genomic locus. Our gain- and loss-of-function experiments showed that miR-126/126* inhibited apoptosis and increased the viability of AML cells and enhanced the colony-forming ability of mouse normal bone marrow progenitor cells alone and particularly, in cooperation with AML1-ETO, likely through targeting Polo-like kinase 2 (PLK2), a tumor suppressor. Our results demonstrate that specific alterations in miRNA expression distinguish AMLs with common translocations and imply that the deregulation of specific miRNAs may play a role in the development of leukemia with these associated genetic rearrangements.
Blood Cells Molecules and Diseases | 2010
Yungui Wang; Zejuan Li; Chunjiang He; Dongmei Wang; Xianggui Yuan; Jianjun Chen; Jie Jin
MicroRNAs (miRNAs) are small ( approximately 22 nucleotide) non-coding RNAs whose altered expression has been associated with various types of cancers, including leukemia. In the present study, we conducted a quantitative PCR (qPCR) analysis of expression of 23 human precursor miRNAs in bone marrow specimens of 85 Chinese primary leukemia patients, including 53 acute myeloid leukemia (AML) and 32 acute lymphoblastic leukemia (ALL) cases. We show that 16 miRNAs were differentially expressed between AMLs and ALLs. Of them, eight were previously reported (i.e., miR-23a, miR-27a/b, miR-128a, miR-128b, miR-221, miR-222, miR-223, and let-7b) and eight were newly identified (i.e., miR-17, miR-20a, miR-29a/c, miR-29b, miR-146a, miR-150, miR-155, and miR-196b). More importantly, through correlating miRNA expression signatures with outcome of patients, we further show that expression signatures of a group of miRNAs are associated with overall survival of patients. Of them, three (i.e., miR-146a, miR-181a/c, and miR-221), five (i.e., miR-25, miR-26a, miR-29b, miR-146a, and miR-196b), and three (i.e., miR-26a, miR-29b, and miR-146a) miRNAs are significantly associated with overall survival (P<0.05) of the 32 ALL, 53 AML, and 40 non-M3 AML patients, respectively. Particularly, the expression signature of miR-146a is significantly inversely correlated with overall survival of both ALL and AML patients. The prognostic significance of miR-146a in AML has been confirmed further in an independent study of 61 Chinese new AML patient samples. We also identified 622 putative target genes of miR-146a that are predicted by at least three out of the five major prediction programs (i.e., TragetScan, PicTar, miRanda, miRBase Targets, and PITA). Through gene ontology analysis, we found that these genes were particularly enriched (2- to 9-fold higher than expected by chance) in the GO categories of negative regulation of biology processes, negative regulation of cellular processes, apoptosis, and cell cycle, which may be related to the association of miR-146a with poor survival.
Cancer Cell | 2017
Zejuan Li; Hengyou Weng; Rui Su; Xiaocheng Weng; Zhixiang Zuo; Chenying Li; Huilin Huang; Sigrid Nachtergaele; Lei Dong; Chao Hu; Xi Qin; Lichun Tang; Yungui Wang; Gia-Ming Hong; Hao Huang; Xiao Wang; Ping Chen; Sandeep Gurbuxani; Stephen Arnovitz; Yuanyuan Li; Shenglai Li; Jennifer Strong; Mary Beth Neilly; Richard A. Larson; Xi Jiang; Pumin Zhang; Jie Jin; Chuan He; Jianjun Chen
N6-Methyladenosine (m6A) represents the most prevalent internal modification in mammalian mRNAs. Despite its functional importance in various fundamental bioprocesses, the studies of m6A in cancer have been limited. Here we show that FTO, as an m6A demethylase, plays a critical oncogenic role in acute myeloid leukemia (AML). FTO is highly expressed in AMLs with t(11q23)/MLL rearrangements, t(15;17)/PML-RARA, FLT3-ITD, and/or NPM1 mutations. FTO enhances leukemic oncogene-mediated cell transformation and leukemogenesis, and inhibits all-trans-retinoic acid (ATRA)-induced AML cell differentiation, through regulating expression of targets such as ASB2 and RARA by reducing m6A levels in these mRNA transcripts. Collectively, our study demonstrates the functional importance of the m6A methylation and the corresponding proteins in cancer, and provides profound insights into leukemogenesis and drug response.
Nature Communications | 2011
Zejuan Li; Hao Huang; Ping Chen; Miao He; Yuanyuan Li; Stephen Arnovitz; Xi Jiang; Chunjiang He; Elizabeth Hyjek; Jun Zhang; Zhiyu Zhang; Abdel G. Elkahloun; Donglin Cao; Chen Shen; Mark Wunderlich; Yungui Wang; Mary Beth Neilly; Jie Jin; Minjie Wei; Jun Lu; Ruud Delwel; Bob Löwenberg; Michelle M. Le Beau; James W. Vardiman; James C. Mulloy; Nancy J. Zeleznik-Le; Paul Liu; Jiwang Zhang; Jianjun Chen
HOXA9 and MEIS1 have essential oncogenic roles in mixed lineage leukaemia (MLL)-rearranged leukaemia. Here we show that they are direct targets of miRNA-196b, a microRNA (miRNA) located adjacent to and co-expressed with HOXA9, in MLL-rearranged leukaemic cells. Forced expression of miR-196b significantly delays MLL-fusion-mediated leukemogenesis in primary bone marrow transplantation through suppressing Hoxa9/Meis1 expression. However, ectopic expression of miR-196b results in more aggressive leukaemic phenotypes and causes much faster leukemogenesis in secondary transplantation than MLL fusion alone, likely through the further repression of Fas expression, a proapoptotic gene downregulated in MLL-rearranged leukaemia. Overexpression of FAS significantly inhibits leukemogenesis and reverses miR-196b-mediated phenotypes. Targeting Hoxa9/Meis1 and Fas by miR-196b is probably also important for normal haematopoiesis. Thus, our results uncover a previously unappreciated miRNA-regulation mechanism by which a single miRNA may target both oncogenes and tumour suppressors, simultaneously, or, sequentially, in tumourigenesis and normal development per cell differentiation, indicating that miRNA regulation is much more complex than previously thought. HOX9AandMEIS1are key oncogenes in MLL-rearranged leukaemia. miRNA-196b is shown here to directly suppress their expression and delay MLL-fusion-mediated leukaemia, but to also cause an aggressive leukaemia phenotype when expressed ectopically, suggesting that it targets tumour suppressors as well.
Cell | 2018
Rui Su; Lei Dong; Chenying Li; Sigrid Nachtergaele; Mark Wunderlich; Ying Qing; Xiaolan Deng; Yungui Wang; Xiaocheng Weng; Chao Hu; Mengxia Yu; Jennifer R. Skibbe; Qing Dai; Dongling Zou; Tong Wu; Kangkang Yu; Hengyou Weng; Huilin Huang; Kyle Ferchen; Xi Qin; Bin Zhang; Jun Qi; Atsuo T. Sasaki; David R. Plas; James E. Bradner; Minjie Wei; Guido Marcucci; Xi Jiang; James C. Mulloy; Jie Jin
R-2-hydroxyglutarate (R-2HG), produced at high levels by mutant isocitrate dehydrogenase 1/2 (IDH1/2) enzymes, was reported as an oncometabolite. We show here that R-2HG also exerts a broad anti-leukemic activity inxa0vitro and inxa0vivo by inhibiting leukemia cell proliferation/viability and by promoting cell-cycle arrest and apoptosis. Mechanistically, R-2HG inhibits fat mass and obesity-associated protein (FTO) activity, thereby increasing global N6-methyladenosine (m6A) RNA modification in R-2HG-sensitive leukemia cells, which in turn decreases the stability of MYC/CEBPA transcripts, leading to the suppression of relevant pathways. Ectopically expressed mutant IDH1 and S-2HG recapitulate the effects of R-2HG. High levels of FTO sensitize leukemic cells to R-2HG, whereas hyperactivation of MYC signaling confers resistance that can be reversed by the inhibition of MYC signaling. R-2HG also displays anti-tumor activity in glioma. Collectively, while R-2HG accumulated in IDH1/2 mutant cancers contributes to cancer initiation, our work demonstrates anti-tumor effectsxa0of 2HG in inhibiting proliferation/survival of FTO-high cancer cells via targeting FTO/m6A/MYC/CEBPA signaling.
Nature Communications | 2016
Xi Jiang; Chao Hu; Stephen Arnovitz; Jason Bugno; Miao Yu; Zhixiang Zuo; Ping Chen; Hao Huang; Bryan Ulrich; Sandeep Gurbuxani; Hengyou Weng; Jennifer Strong; Yungui Wang; Yuanyuan Li; Justin Salat; Shenglai Li; Abdel G. Elkahloun; Yang Yang; Mary Beth Neilly; Richard A. Larson; Michelle M. Le Beau; Tobias Herold; Stefan K. Bohlander; Paul Liu; Jiwang Zhang; Zejuan Li; Chuan He; Jie Jin; Seungpyo Hong; Jianjun Chen
MicroRNAs are subject to precise regulation and have key roles in tumorigenesis. In contrast to the oncogenic role of miR-22 reported in myelodysplastic syndrome (MDS) and breast cancer, here we show that miR-22 is an essential anti-tumour gatekeeper in de novo acute myeloid leukaemia (AML) where it is significantly downregulated. Forced expression of miR-22 significantly suppresses leukaemic cell viability and growth in vitro, and substantially inhibits leukaemia development and maintenance in vivo. Mechanistically, miR-22 targets multiple oncogenes, including CRTC1, FLT3 and MYCBP, and thus represses the CREB and MYC pathways. The downregulation of miR-22 in AML is caused by TET1/GFI1/EZH2/SIN3A-mediated epigenetic repression and/or DNA copy-number loss. Furthermore, nanoparticles carrying miR-22 oligos significantly inhibit leukaemia progression in vivo. Together, our study uncovers a TET1/GFI1/EZH2/SIN3A/miR-22/CREB-MYC signalling circuit and thereby provides insights into epigenetic/genetic mechanisms underlying the pathogenesis of AML, and also highlights the clinical potential of miR-22-based AML therapy.
Nature Cell Biology | 2018
Huilin Huang; Hengyou Weng; Wen-Ju Sun; Xi Qin; Hailing Shi; Huizhe Wu; Boxuan Simen Zhao; Ana Mesquita; Chang Liu; Celvie L. Yuan; Yueh-Chiang Hu; Stefan Hüttelmaier; Jennifer R. Skibbe; Rui Su; Xiaolan Deng; Lei Dong; Miao Sun; Chenying Li; Sigrid Nachtergaele; Yungui Wang; Chao Hu; Kyle Ferchen; Kenneth D. Greis; Xi Jiang; Minjie Wei; Liang-Hu Qu; Jun-Lin Guan; Chuan He; Jian-Hua Yang; Jianjun Chen
N6-methyladenosine (m6A) is the most prevalent modification in eukaryotic messenger RNAs (mRNAs) and is interpreted by its readers, such as YTH domain-containing proteins, to regulate mRNA fate. Here, we report the insulin-like growth factor 2 mRNA-binding proteins (IGF2BPs; including IGF2BP1/2/3) as a distinct family of m6A readers that target thousands of mRNA transcripts through recognizing the consensus GG(m6A)C sequence. In contrast to the mRNA-decay-promoting function of YTH domain-containing family protein 2, IGF2BPs promote the stability and storage of their target mRNAs (for example, MYC) in an m6A-dependent manner under normal and stress conditions and therefore affect gene expression output. Moreover, the K homology domains of IGF2BPs are required for their recognition of m6A and are critical for their oncogenic functions. Thus, our work reveals a different facet of the m6A-reading process that promotes mRNA stability and translation, and highlights the functional importance of IGF2BPs as m6A readers in post-transcriptional gene regulation and cancer biology.Huang et al. identify IGF2BPs as an additional class of N6-methyladenosine (m6A) reader proteins. They find that IGF2BPs selectively bind to m6A-containing mRNAs and promote their stability.
Cell Stem Cell | 2017
Hengyou Weng; Huilin Huang; Huizhe Wu; Xi Qin; Boxuan Simen Zhao; Lei Dong; Hailing Shi; Jennifer R. Skibbe; Chao Shen; Chao Hu; Yue Sheng; Yungui Wang; Mark Wunderlich; Bin Zhang; Louis C. Doré; Rui Su; Xiaolan Deng; Kyle Ferchen; Chenying Li; Miao Sun; Zhike Lu; Xi Jiang; Guido Marcucci; James C. Mulloy; Jianhua Yang; Zhijian Qian; Minjie Wei; Chuan He; Jianjun Chen
N6-methyladenosine (m6A), the most prevalent internal modification in eukaryotic messenger RNAs (mRNAs), plays critical roles in many bioprocesses. However, its functions in normal and malignant hematopoiesis remain elusive. Here, we report that METTL14, a key component of the m6A methyltransferase complex, is highly expressed in normal hematopoietic stem/progenitor cells (HSPCs) and acute myeloid leukemia (AML) cells carrying t(11q23), t(15;17), or t(8;21) and is downregulated during myeloid differentiation. Silencing of METTL14 promotes terminal myeloid differentiation of normal HSPCs and AML cells and inhibits AML cell survival/proliferation. METTL14 is required for development and maintenance of AML and self-renewal of leukemia stem/initiation cells (LSCs/LICs). Mechanistically, METTL14 exerts its oncogenic role by regulating its mRNA targets (e.g., MYB and MYC) through m6A modification, while the protein itself is negatively regulated by SPI1. Collectively, our results reveal the SPI1-METTL14-MYB/MYC signaling axis in myelopoiesis and leukemogenesis and highlight the critical roles of METTL14 and m6A modification in normal and malignant hematopoiesis.
Blood | 2015
Zejuan Li; Ping Chen; Rui Su; Yuanyuan Li; Chao Hu; Yungui Wang; Stephen Arnovitz; Miao He; Sandeep Gurbuxani; Zhixiang Zuo; Abdel G. Elkahloun; Shenglai Li; Hengyou Weng; Hao Huang; Mary Beth Neilly; Shusheng Wang; Eric N. Olson; Richard A. Larson; Michelle M. Le Beau; Jiwang Zhang; Xi Jiang; Minjie Wei; Jie Jin; Paul Liu; Jianjun Chen
It is generally assumed that gain- and loss-of-function manipulations of a functionally important gene should lead to the opposite phenotypes. We show in this study that both overexpression and knockout of microRNA (miR)-126 surprisingly result in enhanced leukemogenesis in cooperation with the t(8;21) fusion genes AML1-ETO/RUNX1-RUNX1T1 and AML1-ETO9a (a potent oncogenic isoform of AML1-ETO). In accordance with our observation that increased expression of miR-126 is associated with unfavorable survival in patients with t(8;21) acute myeloid leukemia (AML), we show that miR-126 overexpression exhibits a stronger effect on long-term survival and progression of AML1-ETO9a-mediated leukemia stem cells/leukemia initiating cells (LSCs/LICs) in mice than does miR-126 knockout. Furthermore, miR-126 knockout substantially enhances responsiveness of leukemia cells to standard chemotherapy. Mechanistically, miR-126 overexpression activates genes that are highly expressed in LSCs/LICs and/or primitive hematopoietic stem/progenitor cells, likely through targeting ERRFI1 and SPRED1, whereas miR-126 knockout activates genes that are highly expressed in committed, more differentiated hematopoietic progenitor cells, presumably through inducing FZD7 expression. Our data demonstrate that miR-126 plays a critical but 2-faceted role in leukemia and thereby uncover a new layer of miRNA regulation in cancer. Moreover, because miR-126 depletion can sensitize AML cells to standard chemotherapy, our data also suggest that miR-126 represents a promising therapeutic target.