Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yunhe Li is active.

Publication


Featured researches published by Yunhe Li.


PLOS ONE | 2008

Consumption of Bt Maize Pollen Expressing Cry1Ab or Cry3Bb1 Does Not Harm Adult Green Lacewings, Chrysoperla carnea (Neuroptera: Chrysopidae)

Yunhe Li; Michael Meissle; Jörg Romeis

Adults of the common green lacewing, Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae), are prevalent pollen-consumers in maize fields. They are therefore exposed to insecticidal proteins expressed in the pollen of insect-resistant, genetically engineered maize varieties expressing Cry proteins derived from Bacillus thuringiensis (Bt). Laboratory experiments were conducted to evaluate the impact of Cry3Bb1 or Cry1Ab-expressing transgenic maize (MON 88017, Event Bt176) pollen on fitness parameters of adult C. carnea. Adults were fed pollen from Bt maize varieties or their corresponding near isolines together with sucrose solution for 28 days. Survival, pre-oviposition period, fecundity, fertility and dry weight were not different between Bt or non-Bt maize pollen treatments. In order to ensure that adults of C. carnea are not sensitive to the tested toxins independent from the plant background and to add certainty to the hazard assessment, adult C. carnea were fed with artificial diet containing purified Cry3Bb1 or Cry1Ab at about a 10 times higher concentration than in maize pollen. Artificial diet containing Galanthus nivalis agglutinin (GNA) was included as a positive control. No differences were found in any life-table parameter between Cry protein containing diet treatments and control diet. However, the pre-oviposition period, daily and total fecundity and dry weight of C. carnea were significantly negatively affected by GNA-feeding. In both feeding assays, the stability and bioactivity of Cry proteins in the food sources as well as the uptake by C. carnea was confirmed. These results show that adults of C. carnea are not affected by Bt maize pollen and are not sensitive to Cry1Ab and Cry3Bb1 at concentrations exceeding the levels in pollen. Consequently, Bt maize pollen consumption will pose a negligible risk to adult C. carnea.


PLOS ONE | 2011

A Comprehensive Assessment of the Effects of Bt Cotton on Coleomegilla maculata Demonstrates No Detrimental Effects by Cry1Ac and Cry2Ab

Yunhe Li; Jörg Romeis; Ping Wang; Yufa Peng; Anthony M. Shelton

The ladybird beetle, Coleomegilla maculata (DeGeer), is a common and abundant predator in many cropping systems. Its larvae and adults are predaceous, feeding on aphids, thrips, lepidopteran larvae and plant tissues, such as pollen. Therefore, this species is exposed to insecticidal proteins expressed in insect-resistant, genetically engineered cotton expressing Cry proteins derived from Bacillus thuringiensis (Bt). A tritrophic bioassay was conduced to evaluate the potential impact of Cry2Ab- and Cry1Ac-expressing cotton on fitness parameters of C. maculata using Bt-susceptible and -resistant larvae of Trichoplusia ni as prey. Coleomegilla maculata survival, development time, adult weight and fecundity were not different when they were fed with resistant T. ni larvae reared on either Bt or control cotton. To ensure that C. maculata were not sensitive to the tested Cry toxins independent from the plant background and to add certainty to the hazard assessment, C. maculata larvae were fed artificial diet incorporated with Cry2Ab, Cry1Ac or both at >10 times higher concentrations than in cotton tissue. Artificial diet containing E-64 was included as a positive control. No differences were detected in any life-table parameters between Cry protein-containing diet treatments and the control diet. In contrast, larvae of C. maculata fed the E-64 could not develop to the pupal stage and the 7-d larval weight was significantly negatively affected. In both feeding assays, the stability and bioactivity of Cry proteins in the food sources were confirmed by ELISA and sensitive-insect bioassays. Our results show that C. maculata is not affected by Bt cotton and is not sensitive to Cry2Ab and Cry1Ac at concentrations exceeding the levels in Bt cotton, thus demonstrating that Bt cotton will pose a negligible risk to C. maculata. More importantly, this study demonstrates a comprehensive system for assessing the risk of genetically modified plants on non-target organisms.


PLOS ONE | 2014

Use of a Pollen-Based Diet to Expose the Ladybird Beetle Propylea japonica to Insecticidal Proteins

Xiaojie Zhang; Yunhe Li; Jörg Romeis; Xinming Yin; Kongming Wu; Yufa Peng

A rape seed pollen-based diet was developed and found to be suitable for use in a dietary exposure assay for Propylea japonica. Using the diet, we established and validated a dietary exposure assay by using the protease inhibitor E-64 as positive control. Dose-dependent responses were documented for all observed life-table parameters of P. japonica including survival, pupation and eclosion rates, development time and adult weight. Results suggested that the dietary assay can detect the effects of insecticidal compounds on the survival and development of P. japonica. Using the established dietary assay, we subsequently tested the toxicity of Cry1Ab, Cry1Ac and Cry1F proteins that are expressed by transgenic maize, cotton or rice plants to P. japonica larvae. The diet containing E-64 was included as a positive control. Survival and development of P. japonica larvae were not adversely affected when the diet contained purified Cry1Ab, Cry1Ac, or Cry1F at 500 µg/g diet representing a worst-case exposure scenario. In contrast, P. japonica larvae were adversely affected when the diet contained E-64. The bioactivity and stability of the Cry proteins in the diet and Cry protein uptake by the ladybird larvae were confirmed by bioassay with a Cry-sensitive insect species and by ELISA. The current study describes a suitable experimental system for assessing the potential effects of gut-active insecticidal compounds on ladybird beetle larvae. The experiments with the Cry proteins demonstrate that P. japonica larvae are not sensitive to Cry1Ab, Cry1Ac and Cry1F.


Environmental Toxicology and Chemistry | 2014

Bt rice producing Cry1C protein does not have direct detrimental effects on the green lacewing Chrysoperla sinica (Tjeder)

Yunhe Li; Xiuping Chen; Long Hu; Jörg Romeis; Yufa Peng

The effects of insect-resistant genetically engineered rice producing Cry1C protein derived from Bacillus thuringiensis (Bt) on Chrysoperla sinica (Tjeder) (Neuroptera: Chrysopidae) were assessed in laboratory bioassays. Survival and development of C. sinica larvae were not adversely affected when the larvae were fed a diet containing purified Cry1C protein at 200 µg/g fresh weight, representing a worst-case exposure scenario; in contrast, C. sinica larvae were adversely affected when the diet contained avidin or potassium arsenate. Life table parameters of C. sinica adults did not differ when the adults were fed with Bt or non-Bt rice pollen together with a 2-M sucrose solution. Life table parameters of C. sinica adults also did not differ when the adults were fed an artificial diet with or without purified Cry1C protein at a nominal concentration that was approximately 20 times higher than that in rice pollen; in contrast, C. sinica adults were adversely affected when the diet contained potassium arsenate. In all bioassays with lacewings, the bioactivity and stability of the Cry1C protein in the diet and Cry1C protein uptake by the lacewings were confirmed by enzyme-linked immunosorbent assay (ELISA) and by bioassays with a Cry1C-sensitive lepidopteran. These results demonstrate that neither larvae nor adults of C. sinica are sensitive to Cry1C protein at concentrations higher than those encountered in the field, demonstrating that the growing of Bt rice producing Cry1C protein is unlikely to pose a risk to C. sinica.


Scientific Reports | 2015

Consumption of Bt rice pollen containing Cry1C or Cry2A does not pose a risk to Propylea japonica (Thunberg) (Coleoptera: Coccinellidae)

Yunhe Li; Xiaojie Zhang; Xiuping Chen; Jörg Romeis; Xinming Yin; Yufa Peng

As a pollen feeder, Propylea japonica would be directly exposed to Cry proteins in Bacillus thuringiensis (Bt)-transgenic rice fields. The effect of Cry1C- or Cry2A-containing transgenic rice pollen on the fitness of P. japonica was assessed using two dietary-exposure experiments in the laboratory. In the first experiment, larval developmental time of P. japonica was significantly longer when fed pollen from Bt rice lines rather than control pollen but other life table parameters were not significantly affected. In the second experiment, P. japonica was not affected when fed a rapeseed pollen-based diet containing purified Cry1C or Cry2A at concentrations that were >10-times higher than in pollen, but P. japonica was affected when the diet contained E-64 as a positive control. In both experiments, the stability and bioactivity of the Cry proteins in the food sources and the uptake of the proteins by P. japonica were confirmed. The results show that P. japonica is not sensitive to Cry1C or Cry2A proteins; the effect observed in the first experiment was likely attributable to unknown differences in the nutritional composition of Bt rice pollen. Overall, the data indicate that the growing of Cry1C- or Cry2A-transgenic rice should pose a negligible risk to P. japonica.


Journal of Insect Physiology | 2010

Use of maize pollen by adult Chrysoperla carnea (Neuroptera: Chrysopidae) and fate of Cry proteins in Bt-transgenic varieties.

Yunhe Li; Michael Meissle; Jörg Romeis

We investigated the use of maize pollen as food by adult Chrysoperla carnea under laboratory and field conditions. Exposure of the insects to insecticidal Cry proteins from Bacillus thuringiensis (Bt) contained in pollen of transgenic maize was also assessed. Female C. carnea were most abundant in a maize field when the majority of plants were flowering and fresh pollen was abundant. Field-collected females contained an average of approximately 5000 maize pollen grains in their gut at the peak of pollen shedding. Comparable numbers were found in females fed ad libitum maize pollen in the laboratory. Maize pollen is readily used by C. carnea adults. When provided with a carbohydrate source, it allowed the insects to reach their full reproductive potential. Maize pollen was digested mainly in the insects mid- and hindgut. When Bt maize pollen passed though the gut of C. carnea, 61% of Cry1Ab (event Bt176) and 79% of Cry3Bb1 (event MON 88017) was digested. The results demonstrate that maize pollen is a suitable food source for C. carnea. Even though the pollen grains are not fully digested, the insects are exposed to transgenic insecticidal proteins that are contained in the pollen.


Pest Management Science | 2013

Expression of Cry1Ac in transgenic Bt soybean lines and their efficiency in controlling lepidopteran pests

Huilin Yu; Yunhe Li; Xiangju Li; Jörg Romeis; Kongming Wu

BACKGROUND Two transgenic lines of the soybean Glycine max, MON87701 expressing the Cry1Ac protein and MON87701RR2Y expressing Cry1Ac +  EPSPS proteins, were evaluated for their resistance to four lepidopteran pests in the laboratory using detached-leaf bioassays throughout the soybean growth seasons (before anthesis, during anthesis and after anthesis) in China. Enzyme-linked immunosorbent assays (ELISAs) were used to monitor the Cry1Ac expression in soybean leaves. RESULTS The bioassay results revealed that both transgenic soybean lines exhibited significantly high resistance against Helicoverpa armigera (Hübner) throughout the soybean growing seasons. The survival rates of H. armigera larvae ranged from 5.4 to 24.4% when feeding on the transgenic soybean leaves, significantly lower than the survival rates when feeding on control leaves (71.1-94.9%). Limited resistance was found for both transgenic soybean lines against Spodoptera litura (Fabricius), although the survival rates and weight of S. litura larvae as well as female fecundity were significantly decreased when feeding on Bt soybean leaves compared with feeding on control leaves. In contrast, both transgenic soybean lines provided almost no resistance to Spodoptera exigua (Hübner) and Agrotis ypsilon (Rottemberg). Cry1Ac expression in the leaves of both transgenic soybean lines was relatively stable throughout the soybean growing season, with a peak occurring at V6 -8 and V11 -12 before anthesis. The ELISA results were positively correlated with the results from the insect bioassays. CONCLUSIONS The results show that, while Cry1Ac-expressing Bt soybeans may provide good protection against H. armigera, alternative control measures are required to manage S. exigua, S. litura and A. ypsilon.


Environmental Entomology | 2011

Development of a Tier-1 Assay for Assessing the Toxicity of Insecticidal Substances Against Coleomegilla maculata

Yunhe Li; Jared S. Ostrem; Jörg Romeis; Mao Chen; Xiaoxia Liu; Richard L. Hellmich; Anthony M. Shelton; Yufa Peng

ABSTRACT To assess the potential dietary effects of insecticidal substances on the predacious ladybird beetle, Coleomegilla maculata De Geer, a Tier-1 laboratory testing system was developed. Artificial diets using shrimp eggs were developed, and a tier-1 bioassay examining C. maculata development and survival was designed based on those diets. To further measure the artificial diet in a Tier-1 testing system, larvae of C. maculata were fed the diet treated with different concentrations of an inorganic stomach poison, potassium arsenate (PA), or a cysteine protease inhibitor, E-64. The results demonstrated that the testing system was capable of detecting the dietary effects of both substances on the survival and development of C. maculata. With increasing concentrations of PA in the diet, fewer larvae developed to adults, with only 22.7% larvae surviving to the adult stage in the treatment with the highest content of PA (32 µg/g of diet). Likewise, dose-dependent responses also were found for other life-table parameters of C. maculata. Similar to the assays with PA, the survival rates of C. maculata consistently decreased with increasing E-64 content in the diet. Survival analysis showed that the insects fed E-64 at 50, 150, and 450 µg/g in the diet had significantly lower survival rates compared with those on the untreated artificial diet. The study presented here describes a robust testing system that will be useful for assessing the potential hazard (or toxicity) effects after dietary exposure of insecticidal compounds produced by GE plants or conventional insecticides on the ladybird predator, C. maculata.


Insect Science | 2014

Tier‐1 assays for assessing the toxicity of insecticidal proteins produced by genetically engineered plants to non‐target arthropods

Yunhe Li; Jörg Romeis; Kongming Wu; Yufa Peng

In assessing an insect‐resistant genetically engineered (IRGE) crop before its commercialization, researchers normally use so‐called “Tier‐1 assays” as the initial step to determine the effects of the crop on non‐target organisms. In these tests, the insecticidal proteins (IPs) produced by the IRGEs are added to the diets of test organisms in the laboratory. Test organisms in such assays can be directly exposed to much higher concentrations of the test IPs than they would encounter in the field. The results of Tier‐1 assays are thus more conservative than those generated in studies in which the organisms are exposed to the IPs by feeding on IRGE plant tissue or in the case of predators or parasites, by feeding on invertebrate prey or hosts that have fed on IRGE plant tissue. In this report, we consider three important factors that must be considered in Tier‐1 assays: (i) methods for delivery of the IP to the test organisms; (ii) the need for and selection of compounds used as positive controls; and (iii) methods for monitoring the concentration, stability and bioactivity of the IP during the assay. We also analyze the existing data from Tier‐1 assays regarding the toxicity of Bt Cry proteins to non‐target arthropod species. The data indicate that the widely used Bt proteins have no direct toxicity to non‐target organisms.


Environmental Entomology | 2014

Expression of Cry1Ab Protein in a Marker-Free Transgenic Bt Rice Line and Its Efficacy in Controlling a Target Pest, Chilo suppressalis (Lepidoptera: Crambidae)

Lei Zhang; Yunhe Li; Yanmin Liu; Lanzhi Han; Zhen Zhu; Feng Wang; Yufa Peng

ABSTRACT A marker-free Bt transgenic rice line, mfb-MH86, was recently developed in China, which contains a cry1Ab gene driven by a ubiquitin promoter. This Bt gene confers resistance to a range of lepidopteran species, including the striped stem borer, Chilo suppressalis (Walker). The expression of Cry1Ab protein in mfb-MH86 leaves, stems and leaf sheaths (hereinafter referred to as stems), and roots was evaluated throughout the rice-growing season using an enzyme-linked immunosorbent assay. In addition, mfb-MH86 resistance to C. suppressalis, a major pest of rice, was evaluated in a laboratory bioassay with field-collected rice stems. Cry1Ab protein levels of mfb-MH86 were highest in leaves (9.71–34.09 µg/g dry weight [DW]), intermediate in stems (7.66–18.51 µg/g DW), and lowest in roots (1.95–13.40 µg/g DW). In all tissues, Cry1Ab levels in mfb-MH86 were higher in seedling and tillering stages than in subsequent growth stages. In the laboratory bioassay, mortality of C. suppressalis after 6 d of feeding on mfb-MH86 stems was 100% throughout the rice-growing season; mortality of C. suppressalis when feeding on stems of the nontransformed isoline, MH86, ranged from 15.0 to 38.3%. The results indicate that Cry1Ab protein levels in mfb-MH86 stems are sufficient to protect plants against C. suppressalis throughout the rice-growing season. Although our results are promising, further comprehensive evaluations of mfb-MH86, including field surveys, will be needed before commercial use.

Collaboration


Dive into the Yunhe Li's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jörg Romeis

International Crops Research Institute for the Semi-Arid Tropics

View shared research outputs
Top Co-Authors

Avatar

Kongming Wu

Huazhong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Qingsong Liu

Xinyang Normal University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Meissle

University of Southampton

View shared research outputs
Top Co-Authors

Avatar

Hao-Jun Zhu

Chinese Academy of Fishery Sciences

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge