Yunhui Hu
Tianjin Medical University Cancer Institute and Hospital
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yunhui Hu.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Ylenia Lombardo; Aleksandra Filipovic; Gemma Molyneux; Manikandan Periyasamy; Georgios Giamas; Yunhui Hu; Pritesh Trivedi; Jayson Wang; Ernesto Yagüe; Loren Michel; R. Charles Coombes
Nicastrin (NCT) is a crucial component of the γ-secretase (GS) enzyme, which prompted investigations into its biological role in cancer. We have previously shown that nicastrin is overexpressed in breast cancer (BC), conferring worse overall survival in invasive, ERα negative patients. Here, we used 2D and 3D Matrigel, anchorage-independent growth conditions and a breast cancer xenograft mouse model to assess the impact of nicastrin on breast cancer stem cell (BCSC) propagation and invasion in vitro and tumor growth in vivo. Stable knockdown of nicastrin in HCC1806 breast cancer cells reduced cell invasion by 51.4 ± 1.7%, accompanied by a morphological change to a rounded cell phenotype and down-regulation of vimentin, Snail, Twist, MMP2, and MMP9. We observed a reduction of the pool of CD44+/CD24− and ALDH1 high breast cancer stem cells by threefold and twofold, respectively, and a reduction by 2.6-fold of the mammospheres formation. Nicastrin overexpression in nontransformed MCF10A cells caused an induction of epithelial to mesenchymal regulators, as well as a fivefold increased ALDH1 activity, a threefold enrichment for CD44+/CD24− stem cells, and a 3.2-fold enhanced mammosphere-forming capacity. Using the γ-sescretase inhibiton, Notch1/4 siRNA, and Akt inhibition, we show that nicastrin regulates breast cancer stem cells partly through Notch1 and the Akt pathway. Exploiting serial dilution transplantation of the HCC1806 cells expressing nicastrin and HCC1806 stably depleted of nicastrin, in vivo, we demonstrate that nicastrin inhibition may be relevant for the reduced tumorigenicity of breast cancer cells. These data could serve as a benchmark for development of nicastrin-targeted therapies in breast cancer.
Breast Cancer Research and Treatment | 2015
Yunhui Hu; Kun Xu; Ernesto Yagüe
Multidrug resistance (MDR) remains one of the most significant obstacles in breast cancer treatment, and this process often involves dysregulation of a great number of microRNAs (miRNAs). Some miRNAs are indicators of drug resistance and confer resistance to chemotherapeutic drugs, although our understanding of this complex process is still incomplete. We have used a combination of miRNA profiling and real-time PCR in two drug-resistant derivatives of MCF-7 and Cal51 cells. Experimental modulation of miR expression has been obtained by retroviral transfection. Taxol and doxorubicin IC50 values were obtained by short-term drug sensitivity assays. Apoptosis was determined by flow cytometry after annexin V staining, by caspase 3/7 and caspase 9 activity assays and the levels of apoptosis-related proteins bcl-2 and bax by real-time PCR and Western blot. miR target was studied using transient transfection of luciferase constructs with the 3′ untranslated regions (UTR) of target mRNAs. Small interfering RNA-mediated genetic knock-down was performed in MDR cells and its modulatory effect on apoptosis examined. The effect of miRNA on tumorigenicity and tumor drug response was studied in mouse xenografts. miRNA profiling of two drug-resistant breast cancer cell models indicated that miR-218 was down-regulated in both MCF-7/A02 and CALDOX cells. Ectopic expression of miR-218 resensitized both drug-resistant cell lines to doxorubicin and taxol due to an increase in apoptosis. miR-218 binds survivin (BIRC5) mRNA 3′-UTR and down-regulated reporter luciferase activity. Experimental down-regulation of survivin by RNA interference in drug-resistant cells did mimic the sensitization observed when miRNA-218 was up-regulated. In addition, resensitization to taxol was also observed in mouse tumor xenografts from cells over-expressing miR-218. miR-218 is involved in the development of MDR in breast cancer cells via targeting survivin and leading to evasion of apoptosis. Targeting miR-218 and survivin may thus provide a potential strategy for reversing drug resistance in breast cancer.
Cell Death and Disease | 2016
Yunhui Hu; Y Qiu; Ernesto Yagüe; W Ji; Jiankang Liu; Jing Zhang
MicroRNAs (miRNAs) have critical roles in regulating cancer cell survival, proliferation and sensitivity to chemotherapy. The potential application of using miRNAs to predict chemotherapeutic response to cancer treatment is highly promising. However, the underlying mechanisms of chemotherapy response control by miRNAs remain to be fully identified and their prognostic value has not been fully evaluated. Here we show a strong correlation between miR-205 expression and chemosensitivtiy to TAC (docetaxol, doxorubicin plus cyclophosphamide), a widely-used neoadjuvant chemotherapy (NAC) regimen, for breast cancer patients. High level of miR-205 predicted better response to TAC regimen NAC in breast cancer patients. We found miR-205 downregulated in both MCF-7/A02 and CALDOX cells, two drug-resistant derivatives of MCF-7 and Cal51 cells, and its ectopic expression led to an increase in apoptosis resensitization of both drug-resistant cell lines to doxorubicin and taxol. We further show that miR-205 directly binds VEGFA and FGF2 mRNA 3′-UTRs and confirm that miR-205 levels are negatively correlated with VEGFA and FGF2 mRNA expression in breast cancer patients. Adding VEGFA and FGF2 exogenously to chemosensitive breast cancer cells and chemoresistant cells with miR-205 overexpression led to drug resistance. Consistently, low VEGFA and FGF2 expression correlated with better response to NAC in breast cancer patients. In addition, inhibition of tumor growth and resensitization to doxorubicin were also observed in mouse tumor xenografts from cells overexpressing miR-205. Taken together, our data suggest that miR-205 enhances chemosensitivity of breast cancer cells to TAC chemotherapy by suppressing both VEGFA and FGF2, leading to evasion of apoptosis. MiR-205 may serve as a predictive biomarker and a potential therapeutic target in breast cancer treatment.
Biochemical Pharmacology | 2013
Selina Raguz; Caroline Adams; Nahal Masrour; Sabeena Rasul; Panagiotis Papoutsoglou; Yunhui Hu; Giulia Cazzanelli; Yuan Zhou; Naina Patel; Charles Coombes; Ernesto Yagüe
Triple-negative breast cancer is characterized by aggressive tumours whose cells lack oestrogen and progesterone receptors and do not over-express HER2. It accounts for approximately 10-15% of breast cancer cases. We sought to generate a cellular model of chemotherapy drug resistance for this type of disease to provide the tools for the development of new therapies. Doxorubicin is a component of some chemotherapy regimes used to treat this form of cancer but resistance preventing disease eradication frequently occurs, mainly due to over-expression of drug transporters such as P-glycoprotein. CALDOX cells were generated by exposure of CAL51 to doxorubicin. Resistance to doxorubicin did not involve drug transporters, as the both parental and resistant cells accumulated doxorubicin to comparable levels. CALDOX cells had slower proliferation rate and an extended G1 cell cycle stage than the parental line, mainly due to an intrinsic activation of CDNK1 (p21), but this cell cycle block was not involved in the mechanism of resistance. CALDOX cells had reduced levels of TOP2A (topoisomerase IIα) and were cross resistant to the topoisomerase II inhibitors etoposide and mitoxantrone. CALDOX cells showed collateral sensitivity to carmustine due to the lack of O⁶-methylguanine-DNA-methyltransferase (MGMT) expression, related to the hypermethylation of its promoter. The collateral sensitivity of CALDOX cells to carmustine provides the rationale to evaluate MGMT promoter methylation status to design better therapeutic strategies for triple negative breast cancer.
Breast Cancer Research and Treatment | 2014
Yunhui Hu; Shuangjing Li; Ming Yang; Cihui Yan; Dongmei Fan; Yuan Zhou; Yanjun Zhang; Ernesto Yagüe; Dongsheng Xiong
Sorcin, a 22-kDa calcium-binding protein, renders cancer cells resistant to chemotherapeutic agents, thus playing an important role in multidrug resistance. As there is a clear association between drug resistance and an aggressive phenotype, we asked whether sorcin affects also the motility, invasion, and stem cell characteristics of cancer cells. We have used both RNA interference (transient and stable expression of hairpins) and a lentiviral expression vector to experimentally modulate sorcin expression in a variety of cells. We demonstrate that sorcin depletion in MDA-MB-231 breast cancer cells reduces the pool of CD44+/CD24− and ALDH1high cancer stem cells (CSCs) as well as mammosphere-forming capacity. We also observe that sorcin regulates epithelial-mesenchymal transition and CSCs partly through E-cadherin and vascular endothelial growth factor expression. This leads to the acquisition of an epithelial-like phenotype, attenuating epithelial-mesenchymal transition and suppression of metastases in nude mice. The sorcin-depleted phenotype can also be reproduced in lung adenocarcinoma A549 cells and lung fibrosarcoma HT1080 cells. In addition, overexpression of sorcin in MCF7 cells, which have low endogenous sorcin expression levels, increases their migration and invasion in vitro. This offers the rationale for the development of therapeutic strategies down-regulating sorcin expression for the treatment of cancer.
Oncology Reports | 2016
Yunhui Hu; Kaiyong Li; Muhammad Asaduzzaman; Raquel Cuella; Hui Shi; Selina Raguz; R. C. Coombes; Yuan Zhou; Ernesto Yagüe
MicroRNA (miR)-106b~25 cluster regulates bypass of doxorubicin and γ-radiation induced senescence by downregulation of the E-cadherin transcriptional activator EP300. We asked whether upregulation of miR-106~25 cluster generates cells with a truly multidrug resistant (MDR) phenotype and whether this is due to upregulation of the ATP-binding cassette (ABC) transporter P-glycoprotein. We used minimally transformed mammary epithelial breast cancer cells (MTMECs) in which the miR-106b~25 cluster was experimentally upregulated by lentiviral transfection or in which hairpins targeting either EP300 or E-cadherin mRNAs have been expressed with lentiviruses. We find that overexpression of miR-106b~25 cluster led to the generation of MDR MTMECs (resistant to etoposide, colchicine and paclitaxel). Paclitaxel resistance was also studied after experimental downregulation of EP300 or E-cadherin. However none of these cells overexpressed P-glycoprotein or where able to efflux a fluorescent derivative of paclitaxel, making this phenotype drug-transporter independent. Paclitaxel treatment in MTMECs led to an increase in early apoptotic cells (Annexin V-positive), activation of caspase-9 and increase in the proportion of cells at the G2/M phase of the cell cycle. However, MTMEC overexpressing miR-106b~25 cluster, or with EP300 or E-cadherin downregulated, showed less activation of apoptosis, caspase-9 and caspase-3/-7 activities. Thus, miR-106b~25 cluster controls transporter-independent MDR by apoptosis evasion via downregulation of EP300.
Oncology Reports | 2015
Caroline Adams; Giulia Cazzanelli; Sabeena Rasul; Ben Hitchinson; Yunhui Hu; R. Charles Coombes; Selina Raguz; Ernesto Yagüe
TP53-regulated inhibitor of apoptosis 1 (TRIAP1) is a novel apoptosis inhibitor that binds HSP70 in the cytoplasm and blocks the formation of the apoptosome and caspase-9 activation. TRIAP1 has been shown to be upregulated in many types of cancers; however, its role remains elusive. We determined the TRIAP1 mRNA levels in a panel of human tissues and found its expression to be ubiquitous. Normal breast, as well as non-tumorigenic breast cells, exhibited lower TRIAP1 mRNA levels than breast cancer cells or their drug-resistant derivatives. TRIAP1 is a small, evolutionarily conserved protein that is 76 amino acids long. We found that yeast cells, in which the TRIAP1 homologue was knocked out, had increased sensitivity to doxorubicin. Equally, RNA interference in breast cancer drug-resistant cells demonstrated that downregulation of TRIAP1 impaired cell growth in the presence of doxorubicin. As expected, caspase-9 activation was diminished after overexpression of TRIAP1 in drug-resistant cells. Importantly, stable transfections of a TRIAP1 expression plasmid in CAL51 cells led to a marked increase in the number of doxorubicin-resistant clones, that was abolished when cells expressed hairpins targeting TRIAP1. In addition, we showed that TRIAP1 expression was also triggered by estrogen deprivation in MCF-7 cells. Although both polyclonal and monoclonal antibodies generated for the present study failed to robustly detect TRIAP1, we demonstrated that TRIAP1 represents a novel marker for drug resistance in breast cancer cells and it may be used in the stratification of breast cancer patients once a suitable antibody has been developed. Equally, these studies open potential drug development strategies for blocking TRIAP1 activity and avoiding drug resistance.
Breast Cancer Research and Treatment | 2017
Muhammad Asaduzzaman; Stephanie Constantinou; Haoxiang Min; John Gallon; Meng-Lay Lin; Poonam Singh; Selina Raguz; Simak Ali; Sami Shousha; R. Charles Coombes; Eric Lam; Yunhui Hu; Ernesto Yagüe
PurposeWe have previously described a novel pathway controlling drug resistance, epithelial-to-mesenchymal transition (EMT) and stemness in breast cancer cells. Upstream in the pathway, three miRs (miR-106b, miR-93 and miR-25) target EP300, a transcriptional activator of E-cadherin. Upregulation of these miRs leads to the downregulation of EP300 and E-cadherin with initiation of an EMT. However, miRs regulate the expression of many genes, and the contribution to EMT by miR targets other than EP300 cannot be ruled out.MethodsWe used lentiviruses expressing EP300-targeting shRNA to downregulate its expression in MCF-7 cells as well as an EP300-knocked-out colon carcinoma cell line. An EP300-expression plasmid was used to upregulate its expression in basal-like CAL51 and MDA-MB-231 breast cancer cells. Drug resistance was determined by short-term proliferation and long-term colony formation assays. Stemness was determined by tumour sphere formation in both soft agar and liquid cultures as well as by the expression of CD44/CD24/ALDH markers. Gene expression microarray analysis was performed in MCF-7 cells lacking EP300. EP300 expression was analysed by immunohistochemistry in 17 samples of metaplastic breast cancer.ResultsCells lacking EP300 became more resistant to paclitaxel whereas EP300 overexpression increased their sensitivity to the drug. Expression of cancer stem cell markers, as well as tumour sphere formation, was also increased in EP300-depleted cells, and was diminished in EP300-overexpressing cells. The EP300-regulated gene signature highlighted genes associated with adhesion (CEACAM5), cytoskeletal remodelling (CAPN9), stemness (ABCG2), apoptosis (BCL2) and metastasis (TGFB2). Some genes in this signature were also validated in a previously generated EP300-depleted model of breast cancer using minimally transformed mammary epithelial cells. Importantly, two key genes in apoptosis and stemness, BCL2 and ABCG2, were also upregulated in EP300-knockout colon carcinoma cells and their paclitaxel-resistant derivatives. Immunohistochemical analysis demonstrated that EP300 expression was low in metaplastic breast cancer, a rare, but aggressive form of the disease with poor prognosis that is characterized by morphological and physiological features of EMT.ConclusionsEP300 plays a major role in the reprogramming events, leading to a more malignant phenotype with the acquisition of drug resistance and cell plasticity, a characteristic of metaplastic breast cancer.
Oncology Letters | 2017
Xiumei Zhao; Jing Zhao; Renjie Hu; Qiang Yao; Guixian Zhang; Hongsheng Shen; Ernesto Yagüe; Yunhui Hu
Traditional Chinese medicine, based on theories developed and practiced for >2,000 years, is one of the most common complementary and alternative types of medicine currently used in the treatment of patients with breast cancer. Ruanjian Sanjie (RJSJ) decoction, is composed of four herbs, including Ban xia (Pinellia ternata), Xia ku cao (Prunella vulgaris), Shan ci gu (Cremastra appendiculata) and Hai zao (Sargassum pallidum), and has traditionally been used for softening hard lumps and resolving hard tissue masses. However, the active compounds and mechanisms of action of RJSJ remain unknown. The present study demonstrated the antitumor activity of RJSJ against Ehrlich ascites carcinoma in Swiss albino mice and breast cancer xenografts in nude mice. Notably, RJSJ does not induce body weight loss, immune function toxicity or myelosuppression in mice, indicating that it is safe and well tolerated. In addition, RJSJ shows potent cytotoxicity against breast cancer cells in vitro by the suppression of the anti-apoptotic proteins B-cell lymphoma 2 and survivin, leading to the activation of caspase-3/7 and caspase-9, and the apoptotic cascade. These findings provide a clear rationale to explore the therapeutic strategy of using RJSJ alone or in combination with chemotherapeutic agents for breast cancer patients and the characterization of its active principles.
Oncology Reports | 2018
Hui Zhao; Qianxi Yang; Yunhui Hu; Jin Zhang
Triple-negative breast cancer (TNBC) refers to a heterogeneous group of tumors, for which there is currently a lack of targeted therapies. Poly(ADP-ribose) polymerase (PARP) inhibitors, phosphatidylinositol 3-kinase (PI3K) inhibitors and carboplatin (CBP) have demonstrated sufficient efficacy and safety for their use as individual drugs for the treatment of TNBC; however, their effects on TNBC when used as a combination have not been investigated. The primary objectives of the present study were to determine the effects of a combination of CBP, olaparib and NVP-BKM120 (BKM120), and to investigate the mechanism underlying their effects on TNBC cells. The drug combination was cytotoxic to TNBC cells, both with regards to short-term and long-term sensitivity, as determined using colony forming assays, and they exerted strong synergistic effects on MDA-MB-231 and CAL51 cell lines. All drugs affected cell cycle progression, and western blotting and immunofluorescence indicated that the the drug combination exerted its cytotoxicity via DNA damage, enhancing non-homologous end joining repair and inhibiting homologous recombination repair. These data provide a strong rationale to explore the therapeutic use of olaparib in combination with CBP and BKM120 in animal models, and later in clinical trials on patients with TNBC.