Yuning Zhou
University of Texas Medical Branch
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yuning Zhou.
Oncogene | 2006
Qingding Wang; Yuning Zhou; Xiaofu Wang; B M Evers
Glycogen-synthase kinase-3 (GSK-3) and extracellular signal-regulated kinase (ERK) are critical downstream signaling proteins for the PI3-kinase/Akt and Ras/Raf/MEK-1 pathway, respectively, and regulate diverse cellular processes including embryonic development, cell differentiation and apoptosis. Here, we show that inhibition of GSK-3 using GSK-3 inhibitors or RNA interference (RNAi) significantly induced the phosphorylation of ERK1/2 in human colon cancer cell lines HT29 and Caco-2. Pretreatment with the PKCδ-selective inhibitor rottlerin or transfection with PKCδ siRNA attenuated the phosphorylation of ERK1/2 induced by the GSK-3 inhibitor SB-216763 and, furthermore, treatment with SB-216763 or transfection with GSK-3α and GSK-3β siRNA increased PKCδ activity, thus identifying a role for PKCδ in the induction of ERK1/2 phosphorylation by GSK-3 inhibition. Treatment with SB-216763 increased expression of cyclooxygenase-2 (COX-2) and IL-8, which are downstream targets of ERK1/2 activation; this induction was abolished by MEK/ERK inhibition, suggesting GSK-3 inhibition induced COX-2 and IL-8 through ERK1/2 activation. The transcriptional induction of COX-2 and IL-8 by GSK-3 inhibition was further demonstrated by the increased COX-2 and IL-8 promoter activity after SB-216763 treatment or transfection with GSK-3α or GSK-3β siRNA. Importantly, our findings identify GSK-3, acting through PKCδ, as a negative regulator of ERK1/2, thus revealing a novel crosstalk mechanism between these critical signaling pathways.
Pediatric Research | 2005
Yuning Zhou; Qingding Wang; B. Mark Evers; Dai H. Chung
Necrotizing enterocolitis (NEC) is a devastating inflammatory condition of the gut that occurs in premature infants. Ischemia-reperfusion gut injury with production of reactive oxygen species (ROS) is thought to contribute to NEC; the exact cellular mechanisms involved are largely unknown. The purpose of this study was to determine the intracellular signaling transduction pathways involved in oxidative stress–induced intestinal epithelial cell apoptosis. H2O2 treatment resulted in rat intestinal epithelial cell apoptosis in a dose- and time-dependent manner; the caspase inhibitor, zVAD-fmk, blocked this response. Western blotting was performed to determine phosphorylation of kinases and ELISA was used to assess DNA fragmentation, as a measure of apoptosis. A rapid increase in phosphorylation of extracellular signal-related kinase (ERK)1/2, c-Jun N-terminal kinase (JNK)1/2, and Akt was noted. Inhibition of ERK and JNK decreased H2O2-induced apoptosis. Additionally, inhibition of protein kinase C (PKC) and phosphatidylinositol 3-kinase (PI3-K) attenuated and enhanced H2O2-mediated apoptosis and mitochondrial membrane potential decrease, respectively. Furthermore, activation of PKC reduced the Akt phosphorylation, whereas inhibition of PKC attenuated H2O2-mediated activation of caspase-3 and enhanced the H2O2-induced Akt phosphorylation. This study shows that activation of multiple signaling transduction pathways occurs during oxidative stress–induced intestinal epithelial cell injury. In contrast to ERK, JNK, and PKC, PI3-K/Akt may play an important role as a protective cellular signaling pathway during this process.
Cell Death & Differentiation | 2008
Qingding Wang; Yuning Zhou; Xiaofu Wang; B M Evers
The cellular mechanisms regulating intestinal differentiation are poorly understood. Sodium butyrate (NaBT), a short-chain fatty acid, increases p27Kip1 expression and induces cell cycle arrest associated with intestinal cell differentiation. Here, we show that treatment of intestinal-derived cells with NaBT induced G0/G1 arrest and intestinal alkaline phosphatase, a marker of differentiation, activity and mRNA expression; this induction was attenuated by inhibition of glycogen synthase kinase-3 (GSK-3). Moreover, treatment with NaBT increased the nuclear, but not the cytosolic, expression and activity of GSK-3β. NaBT decreased cyclin-dependent kinase CDK2 activity and induced p27Kip1 expression; inhibition of GSK-3 rescued NaBT-inhibited CDK2 activity and blocked NaBT-induced p27Kip1 expression in the nucleus but not in the cytoplasm. In addition, we demonstrate that NaBT decreased the expression of S-phase kinase-associated protein 2 (Skp2), and this decrease was attenuated by GSK-3 inhibition. Furthermore, NaBT increased p27Kip1 binding to CDK2, which was completely abolished by GSK-3 inhibition. Overexpression of an active form of GSK-3β reduced Skp2 expression, increased p27Kip1 in the nucleus and increased p27Kip1 binding to CDK2. Our results suggest that GSK-3 not only regulates nuclear p27Kip1 expression through the downregulation of nuclear Skp2 expression but also functions to regulate p27Kip1 assembly with CDK2, thereby playing a critical role in the G0/G1 arrest associated with intestinal cell differentiation.
Biochemical and Biophysical Research Communications | 2012
Zheng Guo; Yuning Zhou; B. Mark Evers; Qingding Wang
Rictor (Rapamycin-insensitive companion of mTOR) forms a complex with mTOR and phosphorylates and activates Akt. Activation of Akt induces expression of c-Myc and cyclin E, which are overexpressed in colorectal cancer and play an important role in colorectal cancer cell proliferation. Here, we show that rictor associates with FBXW7 to form an E3 complex participating in the regulation of c-Myc and cyclin E degradation. The Rictor-FBXW7 complex is biochemically distinct from the previously reported mTORC2 and can be immunoprecipitated independently of mTORC2. Moreover, knocking down of rictor in serum-deprived colorectal cancer cells results in the decreased ubiquitination and increased protein levels of c-Myc and cyclin E while overexpression of rictor induces the degradation of c-Myc and cyclin E proteins. Genetic knockout of FBXW7 blunts the effects of rictor, suggesting that rictor regulation of c-Myc and cyclin E requires FBXW7. Our findings identify rictor as an important component of FBXW7 E3 ligase complex participating in the regulation of c-Myc and cyclin E protein ubiquitination and degradation. Importantly, our results suggest that elevated growth factor signaling may contribute to decrease rictor/FBXW7-mediated ubiquitination of c-Myc and cyclin E, thus leading to accumulation of cyclin E and c-Myc in colorectal cancer cells.
International Journal of Cancer | 2006
Qingding Wang; Xiaofu Wang; Yuning Zhou; B. Mark Evers
FLICE‐like inhibitory protein (FLIP), a naturally occurring caspase‐inhibitory protein that lacks the critical cysteine domain necessary for catalytic activity, is a negative regulator of Fas‐induced apoptosis. Decreased FLIP levels sensitize tumor cells to Fas‐ and TRAIL‐mediated apoptosis; however, the cellular mechanisms regulating FLIP expression have not been defined. Here, we examined the roles of the PKC and NF‐κB pathway in the regulation of FLIP in human colon cancers. FLIP mRNA levels were increased in Caco‐2 cells by treatment with PMA; actinomycin D completely inhibited the induction of FLIP by PMA, indicating transcriptional regulation. PKC inhibitors Gö6983 and Ro‐31‐8220 blocked PMA‐stimulated FLIP expression. Pretreatment with the PKCδ‐selective inhibitor rottlerin or transfection with PKCδ siRNA inhibited PMA‐induced FLIP expression, which identifies a role for PKCδ in FLIP induction. Treatment with the proteasome inhibitor, MG132, or the NF‐κB inhibitor (e.g., PDTC and gliotoxin), or overexpression of the superrepressor of IκB‐α inhibited PMA‐induced upregulation of FLIP. Moreover, PMA‐induced NF‐κB transactivation was blocked by GF109203x. In conclusion, our results demonstrate a critical role for PKCδ/NF‐κB in the regulation of FLIP in human colon cancer cells.
Journal of Biological Chemistry | 2009
L. Andy Chen; Jing Li; Scott R. Silva; Lindsey N. Jackson; Yuning Zhou; Hiroaki Watanabe; Kirk L. Ives; Mark R. Hellmich; B. Mark Evers
The protein kinase D (PKD) family of serine/threonine kinases, which can be activated by gastrointestinal hormones, consists of three distinct isoforms that modulate a variety of cellular processes including intracellular protein transport as well as constitutive and regulated secretion. Although isoform-specific functions have been identified in a variety of cell lines, the expression and function of PKD isoforms in normal, differentiated secretory tissues is unknown. Here, we demonstrate that PKD isoforms are differentially expressed in the exocrine and endocrine cells of the pancreas. Specifically, PKD3 is the predominant isoform expressed in exocrine cells of the mouse and human pancreas, whereas PKD1 and PKD2 are more abundantly expressed in the pancreatic islets. Within isolated mouse pancreatic acinar cells, PKD3 undergoes rapid membrane translocation, trans-activating phosphorylation, and kinase activation after gastrointestinal hormone or cholinergic stimulation. PKD phosphorylation in pancreatic acinar cells occurs viaaCa2+-independent, diacylglycerol- and protein kinase C-dependent mechanism. PKD phosphorylation can also be induced by physiologic concentrations of secretagogues and by in vivo stimulation of the pancreas. Furthermore, activation of PKD3 potentiates MEK/ERK/RSK (RSK, ribosomal S6 kinase) signaling and significantly enhances cholecystokinin-mediated pancreatic amylase secretion. These findings reveal a novel distinction between the exocrine and endocrine cells of the pancreas and further identify PKD3 as a signaling molecule that promotes hormone-stimulated amylase secretion.
Cell Death and Disease | 2015
Yuning Zhou; Piotr G. Rychahou; Qingding Wang; Heidi L. Weiss; B M Evers
The intestinal mucosa undergoes a continual process of proliferation, differentiation and apoptosis, which is regulated by multiple signaling pathways. Notch signaling is critical for the control of intestinal stem cell maintenance and differentiation. However, the precise mechanisms involved in the regulation of differentiation are not fully understood. Previously, we have shown that tuberous sclerosis 2 (TSC2) positively regulates the expression of the goblet cell differentiation marker, MUC2, in intestinal cells. Using transgenic mice constitutively expressing a dominant negative TSC2 allele, we observed that TSC2 inactivation increased mTORC1 and Notch activities, and altered differentiation throughout the intestinal epithelium, with a marked decrease in the goblet and Paneth cell lineages. Conversely, treatment of mice with either Notch inhibitor dibenzazepine (DBZ) or mTORC1 inhibitor rapamycin significantly attenuated the reduction of goblet and Paneth cells. Accordingly, knockdown of TSC2 activated, whereas knockdown of mTOR or treatment with rapamycin decreased, the activity of Notch signaling in the intestinal cell line LS174T. Importantly, our findings demonstrate that TSC2/mTORC1 signaling contributes to the maintenance of intestinal epithelium homeostasis by regulating Notch activity.
Cancer Research | 2007
Qingding Wang; Yuning Zhou; Xiaofu Wang; Dai H. Chung; B. Mark Evers
The tumor suppressor protein phosphatase and tensin homologue deleted on chromosome ten (PTEN) plays an important role in intestinal cell proliferation and differentiation and tumor suppression by antagonizing phosphatidylinositol 3-kinase. Despite its importance, the molecular mechanisms regulating PTEN expression are largely undefined. Here, we show that treatment of the colon cancer cell line HT29 with the differentiating agent sodium butyrate (NaBT) increased PTEN protein and mRNA expression and induced c-Jun NH2-terminal kinase (JNK) activation. Inhibition of JNK by chemical or genetic methods attenuated NaBT-induced PTEN expression. In addition, our findings showed a cross-talk between nuclear factor kappaB (NF-kappaB) and JNK with respect to PTEN regulation. Overexpression of the NF-kappaB superrepressor increased PTEN expression and JNK activity, whereas overexpression of the p65 NF-kappaB subunit reduced both basal and NaBT-mediated JNK activation and PTEN expression. Moreover, we showed that overexpression of PTEN or treatment with NaBT increased expression of the cyclin-dependent kinase inhibitor p27(kip1) in HT29 cells; this induction was attenuated by inhibition of PTEN or JNK expression or overexpression of p65. Finally, we show a role for PTEN in NaBT-mediated cell death and differentiation. Our findings suggest that the JNK/PTEN and NF-kappaB/PTEN pathways play a critical role in normal intestinal homeostasis and colon carcinogenesis.
Cell Death and Disease | 2013
Qingding Wang; Yuning Zhou; Piotr G. Rychahou; Chunming Liu; Heidi L. Weiss; B M Evers
The intestinal mucosa undergoes a continual process of proliferation, differentiation, and apoptosis, which is regulated by multiple signaling pathways. The Wnt/β-catenin pathway has a critical role in this process. Previously, we have shown that the calcineurin-dependent nuclear factor of activated T cell (NFAT) is involved in the regulation of intestinal cell differentiation, as noted by the alteration of brush-border enzyme intestinal alkaline phosphatase (IAP) activity. Here, we show that calcineurin-independent NFAT5 interacts with β-catenin to repress Wnt signaling. We found that overexpression of NFAT5 inhibits, whereas knockdown of NFAT5 increases, TOPflash reporter activity and the expression of Wnt/β-catenin target genes, suggesting that NFAT5 inhibits Wnt signaling. In addition, we demonstrated that NFAT5 directly interacts with the C-terminal transactivation domain (TAD) of β-catenin, inhibits CBP interaction with β-catenin, and inhibits CBP-mediated β-catenin acetylation. Moreover, NFAT5 is expressed in the mucosa of human intestine, with the most pronounced staining in the most differentiated region near the epithelial surface. Knockdown of NFAT5 attenuated sodium butyrate (NaBT)-mediated induction of IAP and sucrase activities; overexpression of NFAT5 induced IAP promoter activity. In summary, we provide evidence showing that NFAT5 is a regulator of Wnt signaling. Importantly, our results suggest that NFAT5 regulation of intestinal cell differentiation may be through inhibition of Wnt/β-catenin signaling.
Molecular Biology of the Cell | 2011
Qingding Wang; Yuning Zhou; Lindsey N. Jackson; Sara M. Johnson; Chi Wing Chow; B. Mark Evers
Previously we demonstrated that overexpression of PTEN enhanced intestinal cell differentiation. In this study we provide evidence showing that NFATc1 and NFATc4 are regulators of PTEN expression. Importantly, our results suggest that NFATc1 and NFATc4 regulation of intestinal cell differentiation may be through PTEN regulation.