Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yunli Zhou is active.

Publication


Featured researches published by Yunli Zhou.


Journal of Molecular Endocrinology | 2012

MEG3 noncoding RNA: a tumor suppressor.

Yunli Zhou; Xun Zhang; Anne Klibanski

Maternally expressed gene 3 (MEG3) is an imprinted gene belonging to the imprinted DLK1-MEG3 locus located at chromosome 14q32.3 in humans. Its mouse ortholog, Meg3, also known as gene trap locus 2 (Gtl2), is located at distal chromosome 12. The MEG3 gene encodes a long noncoding RNA (lncRNA) and is expressed in many normal tissues. MEG3 gene expression is lost in an expanding list of primary human tumors and tumor cell lines. Multiple mechanisms contribute to the loss of MEG3 expression in tumors, including gene deletion, promoter hypermethylation, and hypermethylation of the intergenic differentially methylated region. Re-expression of MEG3 inhibits tumor cell proliferation in culture and colony formation in soft agar. This growth inhibition is partly the result of apoptosis induced by MEG3. MEG3 induces accumulation of p53 (TP53) protein, stimulates transcription from a p53-dependent promoter, and selectively regulates p53 target gene expression. Maternal deletion of the Meg3 gene in mice results in skeletal muscle defects and perinatal death. Inactivation of Meg3 leads to a significant increase in expression of angiogenesis-promoting genes and microvessel formation in the brain. These lines of evidence strongly suggest that MEG3 functions as a novel lncRNA tumor suppressor.


Journal of Biological Chemistry | 2007

Activation of p53 by MEG3 non-coding RNA

Yunli Zhou; Ying Zhong; Yingying Wang; Xun Zhang; Dalia L. Batista; Roger Gejman; Peter J. Ansell; Jing Zhao; Catherine Weng; Anne Klibanski

MEG3 is a maternally expressed imprinted gene suggested to function as a non-coding RNA. Our previous studies suggest that MEG3 has a function of tumor suppression. The tumor suppressor p53 plays a central role in tumor suppression and mediates the functions of many other tumor suppressors. Therefore, we hypothesized that MEG3 functions through activation of p53. We found that transfection of expression constructs for MEG3 and its isoforms results in a significant increase in p53 protein levels and dramatically stimulates p53-dependent transcription from a p53-responsive promoter. Using this as the functional assay, we demonstrated that the open reading frames encoded by MEG3 transcripts are not required for MEG3 function, and the folding of MEG3 RNA is critical to its function, supporting the concept that MEG3 functions as a non-coding RNA. We further found that MEG3 stimulates expression of the growth differentiation factor 15 (GDF15) by enhancing p53 binding to the GDF15 gene promoter. Interestingly, MEG3 does not stimulate p21CIP1 expression, suggesting that MEG3 can regulate the specificity of p53 transcriptional activation. p53 degradation is mainly mediated by the mouse double minute 2 homolog (MDM2). We found that MDM2 levels were down-regulated in cells transfected with MEG3, suggesting that MDM2 suppression contributes at least in part to p53 accumulation induced by MEG3. Finally, we found that MEG3 is able to inhibit cell proliferation in the absence of p53. These data suggest that MEG3 non-coding RNA may function as a tumor suppressor, whose action is mediated by both p53-dependent and p53-independent pathways.


Cancer Research | 2010

Maternally Expressed Gene 3, an Imprinted Noncoding RNA Gene, Is Associated with Meningioma Pathogenesis and Progression

Xun Zhang; Roger Gejman; Ali Mahta; Ying Zhong; Kimberley A. Rice; Yunli Zhou; Pornsuk Cheunsuchon; David N. Louis; Anne Klibanski

Meningiomas are common tumors, representing 15% to 25% of all central nervous system tumors. NF2 gene inactivation on chromosome 22 has been shown as an early event in tumorigenesis; however, few factors underlying tumor growth and progression have been identified. The chromosomal abnormalities of 14q32 are often associated with meningioma pathogenesis and progression; therefore, it has been proposed that an as yet unidentified tumor suppressor is present at this locus. Maternally expressed gene 3 (MEG3) is an imprinted gene located at 14q32 which encodes a noncoding RNA with an antiproliferative function. We found that MEG3 mRNA is highly expressed in normal arachnoidal cells. However, MEG3 is not expressed in the majority of human meningiomas or the human meningioma cell lines IOMM-Lee and CH157-MN. There is a strong association between loss of MEG3 expression and tumor grade. Allelic loss at the MEG3 locus is also observed in meningiomas, with increasing prevalence in higher grade tumors. In addition, there is an increase in CpG methylation within the promoter and the imprinting control region of MEG3 gene in meningiomas. Functionally, MEG3 suppresses DNA synthesis in both IOMM-Lee and CH157-MN cells by approximately 60% in bromodeoxyuridine incorporation assays. Colony-forming efficiency assays show that MEG3 inhibits colony formation in CH157-MN cells by approximately 80%. Furthermore, MEG3 stimulates p53-mediated transactivation in these cell lines. Therefore, these data are consistent with the hypothesis that MEG3, which encodes a noncoding RNA, may be a tumor suppressor gene at chromosome 14q32 involved in meningioma progression via a novel mechanism.


Oncogene | 1997

Reexpression of the retinoblastoma protein in tumor cells induces senescence and telomerase inhibition

Hong Ji Xu; Yunli Zhou; Wan Ji; Guang Shing Perng; Russell P. Kruzelock; Cheng Te Kong; Robert C. Bast; Gordon B. Mills; Jian Li; Shi Xue Hu

Normal human diploid cells senesce in vitro and in vivo after a limited number of cell divisions. This process known as cellular senescence is an underlying cause of aging and a critical barrier for development of human cancers. We demonstrate here that reexpression of functional pRB alone in RB/p53-defective tumor cells via a modified tetracycline-regulated gene expression system resulted in a stable growth arrest at the G0/G1 phase of the cell cycle, preventing tumor cells from entering S phase in response to a variety of mitogenic stimuli. These cells displayed multiple morphological changes consistent with cellular senescence and expressed a senescence-associated β-galactosidase biomarker. Further studies indicated that telomerase activity, which was assumably essential for an extended proliferative life-span of neoplastic cells, was abrogated or repressed in the tumor cell lines after induction of pRB (but not p53) expression. Strikingly, when returned to an non-permissive medium for pRB expression, the pRB-induced senescent tumor cells resumed DNA synthesis, attempted to divide but most died in the process, a phenomenon similar to postsenescent crisis of SV40 T-antigen-transformed human diploid fibroblasts in late passage. These observations provide direct evidence that overexpression of pRB alone in RB/p53-defective tumor cells is sufficient to reverse their immortality and cause a phenotype that is, by all generally accepted criteria, indistinguishable from replicative senescence. The results suggest that pRB may play a causal role in the intrinsic cellular senescence program.


Endocrinology | 2010

Maternally Expressed Gene 3 (MEG3) Noncoding Ribonucleic Acid: Isoform Structure, Expression, and Functions

Xun Zhang; Kimberley A. Rice; Yingying Wang; Wendy Y. Chen; Ying Zhong; Yuki Nakayama; Yunli Zhou; Anne Klibanski

Maternally expressed gene 3 (MEG3) is an imprinted gene highly expressed in the human pituitary. However, MEG3 expression is lost in human gonadotroph-derived pituitary adenomas and most human tumor cell lines. Expression of MEG3 in tumor cells results in growth suppression, p53 protein increase, and activation of p53 downstream targets. The MEG3 gene encodes a noncoding RNA of approximately 1700 nucleotides. There are 12 different MEG3 gene transcripts, generated by alternative splicing. They contain the common exons 1-3 and exons 8-10, but each uses one or more exons 4-7 in a different combination in the middle. MEG3 isoform expression patterns are tissue and cell type specific. Functionally, each isoform stimulates p53-mediated transactivation and suppresses tumor cell growth. We analyzed the secondary RNA folding structure of each MEG3 isoform, using the computer program mfold. All MEG3 RNA isoforms contain three distinct secondary folding motifs M1, M2, and M3. Deletion analysis showed that motifs M2 and M3 are important for p53 activation. Furthermore, a hybrid MEG3 RNA, containing a piece of artificially synthesized sequence different from the wild type but folding into a similar secondary structure, retained the functions of both p53 activation and growth suppression. These results support the hypothesis that a proper folding structure of the MEG3 RNA molecule is critical for its biological functions. This study establishes for the first time the structure-function relationship of a large noncoding RNA and provides a first look into the molecular mechanisms of the biological functions of a large noncoding RNA.


The Journal of Clinical Endocrinology and Metabolism | 2008

Selective Loss of MEG3 Expression and Intergenic Differentially Methylated Region Hypermethylation in the MEG3/DLK1 Locus in Human Clinically Nonfunctioning Pituitary Adenomas

Roger Gejman; Dalia L. Batista; Ying Zhong; Yunli Zhou; Xun Zhang; Brooke Swearingen; Constantine A. Stratakis; E. Tessa Hedley-Whyte; Anne Klibanski

CONTEXT MEG3 is an imprinted gene encoding a novel noncoding RNA that suppresses tumor cell growth. Although highly expressed in the normal human pituitary, it is unknown which of the normal pituitary cell types and pituitary tumors express MEG3. OBJECTIVES Our objectives were 1) to investigate cell-type- and tumor-type-specific expression of MEG3 in the human pituitary and 2) to investigate whether methylation in the intergenic differentially methylated region (IG-DMR) at the DLK1/MEG3 locus is involved in the loss of MEG3 expression in tumors. DESIGN AND METHODS RT-PCR, quantitative RT-PCR, Northern blot, and a combination of in situ hybridization and immunofluorescence were used to determine the cell-type- and tumor-type-specific MEG3 expression. Bisulfite treatment and PCR sequencing of genomic DNA were used to measure the CpG methylation status in the normal and tumor tissues. Five normal human pituitaries and 17 clinically nonfunctioning, 11 GH-secreting, seven prolactin-secreting, and six ACTH-secreting pituitary adenomas were used. RESULTS All normal human pituitary cell types express MEG3. However, loss of MEG3 expression occurs only in nonfunctioning pituitary adenomas of a gonadotroph origin. All other pituitary tumor phenotypes examined express MEG3. Hypermethylation of the IG-DMR at the DLK1/MEG3 locus is present in nonfunctioning pituitary adenomas. CONCLUSIONS MEG3 is the first human gene identified expressed in multiple normal human pituitary cell types with loss of expression specifically restricted to clinically nonfunctioning pituitary adenomas. The IG-DMR hypermethylation may be an additional mechanism for MEG3 gene silencing in such tumors.


Endocrinology | 2010

Increased Expression of Angiogenic Genes in the Brains of Mouse Meg3-Null Embryos

Francesca E. Gordon; Catherine L. Nutt; Pornsuk Cheunsuchon; Yuki Nakayama; Katelyn A. Provencher; Kimberley A. Rice; Yunli Zhou; Xun Zhang; Anne Klibanski

Maternally expressed gene 3 (MEG3) is a noncoding RNA highly expressed in the normal human brain and pituitary. Expression of MEG3 is lost in gonadotroph-derived clinically nonfunctioning pituitary adenomas. Meg3 knockout mice were generated to identify targets and potential functions of this gene in embryonic development and tumorigenesis. Gene expression profiles were compared in the brains of Meg3-null embryos and wild-type littermate controls using microarray analysis. Microarray data were analyzed with GeneSifter, which uses Kyoto Encyclopedia of Genes and Genomes pathways and Gene Ontology classifications to identify signaling cascades and functional categories of interest within the dataset. Differences were found in signaling pathways and ontologies related to angiogenesis between wild-type and knockout embryos. Quantitative RT-PCR and immunohistological staining showed increased expression of some Vascular Endothelial Growth Factor pathway genes and increased cortical microvessel density in the Meg3-null embryos. In conclusion, Meg3 may play an important role in control of vascularization in the brain and may function as a tumor suppressor in part by inhibiting angiogenesis.


Development | 2010

Activation of paternally expressed genes and perinatal death caused by deletion of the Gtl2 gene

Yunli Zhou; Pornsuk Cheunsuchon; Yuki Nakayama; Michael W. Lawlor; Ying Zhong; Kimberley A. Rice; Li Zhang; Xun Zhang; Francesca E. Gordon; Hart G.W. Lidov; Roderick T. Bronson; Anne Klibanski

The Dlk1-Gtl2 imprinting locus is located on mouse distal chromosome 12 and consists of multiple maternally expressed non-coding RNAs and several paternally expressed protein-coding genes. The imprinting of this locus plays a crucial role in embryonic development and postnatal growth. At least one cis-element, the intergenic differentially methylated region (IG-DMR) is required for expression of maternally expressed genes and repression of silenced paternally expressed genes. The mechanism by which the IG-DMR functions is largely unknown. However, it has been suggested that the unmethylated IG-DMR acts as a positive regulator activating expression of non-coding RNAs. Gtl2 is the first non-coding RNA gene downstream of the IG-DMR. Although its in vivo function in the mouse is largely unknown, its human ortholog MEG3 has been linked to tumor suppression in human tumor-derived cell lines. We generated a knockout mouse model, in which the first five exons and adjacent promoter region of the Gtl2 gene were deleted. Maternal deletion of Gtl2 resulted in perinatal death and skeletal muscle defects, indicating that Gtl2 plays an important role in embryonic development. The maternal deletion also completely abolished expression of downstream maternally expressed genes, activated expression of silenced paternally expressed genes and resulted in methylation of the IG-DMR. By contrast, the paternal inherited deletion did not have this effect. These data strongly indicate that activation of Gtl2 and its downstream maternal genes play an essential role in regulating Dlk1-Gtl2 imprinting, possibly by maintaining active status of the IG-DMR.


Oncogene | 2008

Lipocalin 2 is required for BCR-ABL-induced tumorigenesis

X. Leng; Huai Lin; T. Ding; Ying-Nai Wang; Yun Wu; Sherry Klumpp; Tong Sun; Yunli Zhou; P. Monaco; John W. Belmont; Alan Aderem; Shizuo Akira; Roland K. Strong; Ralph B. Arlinghaus

Our previous studies indicate that reduction of lipocalin 2 (mouse 24p3) expression by either anti-sense or siRNA approaches strongly reduces the overgrowth of BCR-ABL+ mouse myeloid 32D in marrow and spleen of NOD/SCID mice. In this study, we used the mouse bone marrow transplant model to further explore the role of 24p3 in BCR-ABL-induced leukemia. Consistent with our previous findings, when using non-irradiated mice as recipient, donor marrow cells expressing BCR-ABL but lacking 24p3 did not cause leukemia or any disease after 75 days, whereas all mice receiving wild type BCR-ABL donor cells died with CML-like disease. An agar clone of the BCR-ABL+ human CML cell line K562 (C5) that secretes relatively high levels of lipocalin 2 (human NGAL) induced suppression of hematopoiesis in spleen and marrow of mice, leading to early death in contrast to parental K562 or K562 clone (C6) expressing low amounts of NGAL. Compared with K562 cells, overexpressing NGAL in K562 led to a higher apoptosis rate and an atrophy phenotype in the spleen of the inoculated mice. Plasma from both leukemic mice and CML patients showed elevated lipocalin 2 levels compared with healthy individuals. Moreover, we found that a primary stable cell line from wild-type mouse marrow cells expressing BCR-ABL caused solid tumors in nude mice whereas a similar BCR-ABL+ cell line from 24p3 null mice did not. These findings demonstrate that lipocalin 2 has at least two functions related to tumorigenesis, one involving apoptosis induction of normal hematopoietic cells and the other being tissue invasion by leukemia cells.


Molecular and Cellular Endocrinology | 2014

Genetic and epigenetic mutations of tumor suppressive genes in sporadic pituitary adenoma

Yunli Zhou; Xun Zhang; Anne Klibanski

Human pituitary adenomas are the most common intracranial neoplasms. Approximately 5% of them are familial adenomas. Patients with familial tumors carry germline mutations in predisposition genes, including AIP, MEN1 and PRKAR1A. These mutations are extremely rare in sporadic pituitary adenomas, which therefore are caused by different mechanisms. Multiple tumor suppressive genes linked to sporadic tumors have been identified. Their inactivation is caused by epigenetic mechanisms, mainly promoter hypermethylation, and can be placed into two groups based on their functional interaction with tumor suppressors RB or p53. The RB group includes CDKN2A, CDKN2B, CDKN2C, RB1, BMP4, CDH1, CDH13, GADD45B and GADD45G; AIP and MEN1 genes also belong to this group. The p53 group includes MEG3, MGMT, PLAGL1, RASSF1, RASSF3 and SOCS1. We propose that the tumor suppression function of these genes is mainly mediated by the RB and p53 pathways. We also discuss possible tumor suppression mechanisms for individual genes.

Collaboration


Dive into the Yunli Zhou's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hong Ji Xu

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Shi Xue Hu

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Daniel C. Danila

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Jian Li

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

William F. Benedict

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge