Yunlong Lei
Sichuan University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yunlong Lei.
Medicinal Research Reviews | 2015
Yunlong Lei; Kui Wang; Longfei Deng; Yi Chen; Edouard C. Nice; Canhua Huang
Inflammation is an essential immune response characterized by pain, swelling, redness, heat, and impaired function. A controlled acute inflammatory response is necessary to fight off infection and overcome injury. However, if the inflammatory process persists and enters into the chronic state, it can lead to local and systemic deleterious effects counterproductive to healing and instead constitutes a new pathology. Typically, inflamed tissues are associated with an elevated level of reactive species (reactive oxygen species (ROS)/reactive nitrogen species (RNS)). These ROS/RNS are generated during the respiratory burst of immune cells and are important factors in defense against invading pathogens. Additionally, reactive species are now known to trigger oxidative/nitrosative modifications of biomolecules. While most of these modifications lead to irreparable damage, some are subtle and fully reversible. The reversible modifications can initiate signaling cascades known as “redox signaling.” This redox signaling tightly modulates the inflammatory response. Thus, understanding the complex role of ROS/RNS‐induced redox signaling in inflammation will assist in the design of relevant therapeutic intervention strategies for inflammation‐associated diseases. This review will highlight the impact of oxidative stress and redox signaling on inflammation and inflammation‐associated diseases, with a focus on redox modifications of inflammation‐related proteins.
Autophagy | 2011
Kui Wang; Rui Liu; Jingyi Li; Jiali Mao; Yunlong Lei; Jinhua Wu; Jun Zeng; Tao Zhang; Hong Wu; Lijuan Chen; Canhua Huang; Yuquan Wei
Quercetin, a dietary antioxidant present in fruits and vegetables, is a promising cancer chemopreventive agent that inhibits tumor promotion by inducing cell cycle arrest and promoting apoptotic cell death. In this study, we examined the biological activities of quercetin against gastric cancer. Our studies demonstrated that exposure of gastric cancer cells AGS and MKN28 to quercetin resulted in pronounced pro-apoptotic effect through activating the mitochondria pathway. Meanwhile, treatment with quercetin induced appearance of autophagic vacuoles, formation of acidic vesicular organelles (AVOs), conversion of LC3-I to LC3-II, recruitment of LC3-II to the autophagosomes as well as activation of autophagy genes, suggesting that quercetin initiates the autophagic progression in gastric cancer cells. Furthermore, either administration of autophagic inhibitor chloroquine or selective ablation of atg5 or beclin 1 using small interfering RNA (siRNA) could augment quercetin-induced apoptotic cell death, suggesting that autophagy plays a protective role against quercetin-induced apoptosis. Moreover, functional studies revealed that quercetin activated autophagy by modulation of Akt-mTOR signaling and hypoxia-induced factor 1α (HIF-1α) signaling. Finally, a xenograft model provided additional evidence for occurrence of quercetin-induced apoptosis and autophagy in vivo. Together, our studies provided new insights regarding the biological and anti-proliferative activities of quercetin against gastric cancer, and may contribute to rational utility and pharmacological study of quercetin in future anti-cancer research.
Molecular Cancer | 2010
Fenglian Ren; Hong Wu; Yunlong Lei; Haiyuan Zhang; Rui Liu; Yong Zhao; Xiancheng Chen; Dequan Zeng; Aiping Tong; Lijuan Chen; Yuquan Wei; Canhua Huang
BackgroundHepatocellular carcinoma (HCC) is one of the most common malignancies worldwide with poor prognosis due to resistance to conventional chemotherapy and limited efficacy of radiotherapy. There is an urgent need to develop novel biomarkers for early diagnosis, as well as to identify new drug targets for therapeutic interventions.Patients and methods54 paired HCC samples and 21 normal liver tissues were obtained from West China Hospital of Sichuan University. Informed consent was obtained from all the patients or their relatives prior to analysis, and the project was approved by the Institutional Ethics Committee of Sichuan University. Stable Isotope Labeling with Amino Acids in Cell Culture (SILAC)-based proteomics was employed to profile the differentially expressed proteins between a HepG2 human hepatoma cell line and an immortal hepatic cell line L02. Validation of PGAM1 expression was performed by semi-quantitative RT-PCR, immunoblot and immunohistochemistry using clinical samples. shRNA expressing plasmids specifically targeting PGAM1 were designed and constructed by GenePharma Corporation (Shanghai, China), and were utilized to silence expression of PGAM1 in vitro and in vivo. Cell proliferation was measured by a combination of colony formation assay and Ki67 staining. Apoptosis was examined by flow cytometry and TUNEL assay.ResultsA total of 63 dysregulated proteins were identified, including 51 up-regulated proteins, and 12 down-regulated proteins (over 2-fold, p < 0.01). Phosphoglycerate mutase 1 (PGAM1) was found markedly upregulated. Clinico-pathological analysis indicated that overexpression of PGAM1 was associated with 66.7% HCC, and strongly correlated with poor differentiation and decreased survival rates (p < 0.01). shRNAs-mediated repression of PGAM1 expression resulted in significant inhibition in liver cancer cell growth both in vitro and in vivo.ConclusionOur studies suggested that PGAM1 plays an important role in hepatocarcinogenesis, and should be a potential diagnostic biomarker, as well as an attractive therapeutic target for hepatocellular carcinoma.
Autophagy | 2010
Jingyi Li; Rui Liu; Yunlong Lei; Kui Wang; Quek Choon Lau; Na Xie; Shengtao Zhou; Chunlai Nie; Lijuan Chen; Yuquan Wei; Canhua Huang
Suberoylanilide hydroxamic acid (SAHA) is a newly emerging histone deacetylase inhibitor (HDACi) and has been approved in phase II clinical trials for treating patients with cutaneous T-cell lymphoma. Autophagy is a conserved self-digestion process that degrades cytoplasmic materials and recycles long-lived proteins and organelles within cells. In this study, we demonstrate that SAHA stimulates autophagy in Jurkat T-leukemia cells, which was evidenced by the appearance of autophagic vacuoles, formation of acidic vesicular organelles, recruitment of LC3-II to the autophagosomes and conversion of LC3-I to LC3-II. Moreover, SAHA treatment upregulated expression of Beclin 1 and Atg7 and promoted formation of the Atg12-Atg5 conjugate. Furthermore, inhibition of autophagy by chloroquine (CQ) enhanced SAHA-induced apoptosis. To determine the underlying mechanism of SAHA-induced autophagy, two complementary proteomic approaches (2-DE and SILAC), coupled with ESI-Q-TOF MS/MS analysis are utilized to profile differentially expressed proteins between control and SAHA-treated Jurkat T-leukemia cells. In total, 72 proteins were identified with significant alterations. Cluster analysis of the changed proteins reveal several groups of enzymes associated with energy metabolism, anti-oxidative stress and cellular redox control, which suggested an abnormal reactive oxygen species (ROS) production in SAHA-treated Jurkat T-leukemia cells. These observations were further confirmed by ROS chemiluminescence assay. Mechanistic studies revealed that SAHA-triggered autophagy was mediated by ROS production, which could be attenuated by N-acetyl cysteine (NAC), a ROS inhibitor. Finally, we illustrated that Akt-mTOR signaling, a major suppressive cascade of autophagy, was inactivated by SAHA treatment. Taken together, our study identifies autophagy as a reaction to counter increased ROS and is thus involved as a cellular prosurvival mechanism in response to SAHA treatment.
Molecular & Cellular Proteomics | 2011
Yunlong Lei; Kai Huang; Cong Gao; Quek Choon Lau; Hua Pan; Ke Xie; Jingyi Li; Rui Liu; Tao Zhang; Na Xie; Huey Shan Nai; Hong Wu; Qiang Dong; Xia Zhao; Edouard C. Nice; Canhua Huang; Yuquan Wei
Colorectal cancer (CRC) is the third most commonly diagnosed cancer in males and second in females worldwide. Unfortunately 40–50% of patients already have metastatic disease at presentation when prognosis is poor with a 5-year survival of <10%. Reactive oxygen species (ROS) have been proposed to play a crucial role in tumor metastasis. We now show that higher levels of ROS accumulation are found in a colorectal cancer-derived metastatic cell line (SW620) compared with a cell line (SW480) derived from the primary lesion from the same patient. In addition, ROS accumulation can affect both the migratory and invasive capacity of SW480 and SW620 cells. To explore the molecular mechanism underlying ROS-induced migration and invasion in CRC, we have compared protein expression patterns between SW480 and SW620 cells using a two-dimensional electrophoresis-based proteomics strategy. A total of 63 altered proteins were identified from tandem MS analysis. Cluster analysis revealed dysregulated expression of multiple redox regulative or ROS responsive proteins, implicating their functional roles in colorectal cancer metastasis. Molecular and pathological validation demonstrated that altered expression of PGAM1, GRB2, DJ-1, ITGB3, SOD-1, and STMN1 was closely correlated with the metastatic potential of CRC. Functional studies showed that ROS markedly up-regulated expression of ITGB3, which in turn promoted an aggressive phenotype in SW480 cells, with concomitant up-regulated expression of STMN1. In contrast, knockdown of ITGB3 expression could mitigate the migratory and invasive potential of SW620 or H2O2-treated SW480 cells, accompanied by down-regulated expression of STMN1. The function of ITGB3 was dependant on the surface expression of integrin αvβ3 heterodimer. Furthermore, STMN1 expression and the PI3K-Akt-mTOR pathway were found to be involved in ROS-induced and ITGB3-mediated migration and invasion of colorectal cancer cells. Taken together, these studies suggest that ITGB3 plays an important role in ROS-induced migration and invasion in CRC.
Molecular & Cellular Proteomics | 2009
Rui Liu; Zhenjun Li; Shujun Bai; Haiyuan Zhang; Minghai Tang; Yunlong Lei; Lijuan Chen; Shufang Liang; Ying Ian Zhao; Yuquan Wei; Canhua Huang
Gastric cancer is the second most common cancer worldwide and has a poor prognosis. To determine the mechanism of adaptation to metabolic stress in cancer cells, we used gastric cancer as a model system to reveal the potential signaling pathways involved. Two-dimensional polyacrylamide gel electrophoresis coupled with ESI-Q-TOF MS/MS analysis was used to identify differentially expressed proteins between gastric tumor tissues and the corresponding noncancerous tissues. In total, 107 spots with significant alteration (±over 2-fold, p < 0.05) were positively identified by MS/MS analysis. Altered expression of representative proteins was validated by RT-PCR and Western blotting. Cluster analysis of the changed proteins revealed an interesting group of metabolic proteins, which suggested accumulation of triiodothyronine (T3; the major functional component of thyroid hormone) and overexpression of hypoxia-induced factor (HIF) in gastric carcinoma. These observations were further confirmed by electrochemiluminescence immunoassay and immunohistochemistry. T3-induced expression of HIF1-α and vascular endothelial growth factor was further verified using a gastric cancer cell line and in vivo mouse model. Because the early accumulation of HIF1-α was found to be independent of de novo transcription, we also found that the cytosolic cascade phosphatidylinositol 3-kinase/Akt pathway sensitive to T3 stimulus was involved. Furthermore we demonstrated that T3-induced overexpression of HIF1-α was mediated by fumarate accumulation and could be enhanced by fumarate hydratase inactivation but inhibited by 2-oxoglutarate. These results provide evidence for alteration of metabolic proteins and dysfunction of thyroid hormone regulation in gastric tumors, and a novel thyroid hormone-mediated tumorigenic signaling pathway is proposed. Our findings are considered a significant step toward a better understanding of adaptations to metabolic stress in gastric carcinogenesis.
Cancer Research | 2013
Rui Liu; Jingyi Li; Ke Xie; Tao Zhang; Yunlong Lei; Yi Chen; Lu Zhang; Kai Huang; Kui Wang; Hong Wu; Min Wu; Edouard C. Nice; Canhua Huang; Yuquan Wei
Tumor cells evolve by interacting with the local microenvironment; however, the tumor-stroma interactions that govern tumor metastasis are poorly understood. In this study, proteomic analyses reveal that coculture with tumor-associated fibroblasts (TAF) induces significant overexpression of FGFR4, but not other FGFRs, in colorectal cancer cell lines. Mechanistic study shows that FGFR4 plays crucial roles in TAF-induced epithelial-to-mesenchymal transition (EMT) in colorectal cancer cell lines. Accumulated FGFR4 in cell membrane phosphorylates β-catenin, leading to translocation of β-catenin into the nucleus. Further, TAF-derived CCL2 and its downstream transcription factor, Ets-1, are prerequisites for TAF-induced FGFR4 upregulation. Furthermore, FGFR4-associated pathways are shown to be preferentially activated in colorectal tumor samples, and direct tumor metastasis in a mouse metastasis model. Our study shows a pivotal role of FGFR4 in tumor-stroma interactions during colorectal cancer metastasis, and suggests novel therapeutic opportunities for the treatment of colorectal cancer.
Cell Death and Disease | 2013
Longfei Deng; Yunlong Lei; Rui Liu; Jingyi Li; Kefei Yuan; Yi Li; Yi Chen; Yi Liu; You Lu; Carl Keith Edwards; Canhua Huang; Yuquan Wei
Autophagy is a cellular catabolic process by which long-lived proteins and damaged organelles are degradated by lysosomes. Activation of autophagy is an important survival mechanism that protects cancer cells from various stresses, including anticancer agents. Recent studies indicate that pyrvinium pamoate, an FDA-approved antihelminthic drug, exhibits wide-ranging anticancer activity. Here we demonstrate that pyrvinium inhibits autophagy both in vitro and in vivo. We further demonstrate that the inhibition of autophagy is mammalian target of rapamycin independent but depends on the transcriptional inhibition of autophagy genes. Moreover, the combination of pyrvinium with autophagy stimuli improves its toxicity against cancer cells, and pretreatment of cells with 3-MA or siBeclin1 partially protects cells from pyrvinium-induced cell death under glucose starvation, suggesting that targeted autophagy addiction is involved in pyrvinium-mediated cytotoxicity. Finally, in vivo studies show that the combination therapy of pyrvinium with the anticancer and autophagy stimulus agent, 2-deoxy-D-glucose (2-DG), is significantly more effective in inhibiting tumor growth than pyrvinium or 2-DG alone. This study supports a novel cancer therapeutic strategy based on targeting autophagy addiction and implicates using pyrvinium as an autophagy inhibitor in combination with chemotherapeutic agents to improve their therapeutic efficacy.
Journal of Proteomics | 2013
Tao Zhang; Na Xie; Weifeng He; Rui Liu; Yunlong Lei; Yi Chen; Hong Tang; Bo Liu; Canhua Huang; Yuquan Wei
UNLABELLED HBx is well-known to be a multifunctional protein encoded by HBV and its biological functions are mainly dependent on pleiotropic protein-protein interactions (PPIs); however, the global mapping of HBx-interactome has not been established so far. Thus, in this study, we have identified 127 HBx-interacting proteins by a profound GST pull-down assay coupled with mass spectrometry, and constructed an HBx-interactome network and core apoA-I pathways with a series of bioinformatics approaches. One of the identified HBx-binding partners is apolipoprotein A-I (apoA-I), which has a specific role in lipid and cholesterol metabolism. The HBx-apoA-I protein interaction was confirmed by both GST pull-down and co-immunoprecipitation. The ectopic overexpression of apoA-I can lead to a significant inhibition on HBV secretion concomitant with the reduction of cellular cholesterol level. In addition, HBV can modulate the function of apoA-I through HBx which might interact with the 44-189 residues of apoA-I and result in dysfunction of apoA-I such as decreased self-association ability, increased carbonyl level and impaired lipid-binding ability. Our results demonstrate an integrated physical association of HBx and host proteins, especially a novel interactor apoA-I that may influence the HBV secretion, which would shed new light on exploring the complicated mechanisms of HBV manipulation on host cellular functions. BIOLOGICAL SIGNIFICANCE HBx is well-known to be a multifunctional protein encoded by HBV and its biological functions are mainly dependent on pleiotropic protein-protein interactions. Although a series of HBx-interacting proteins have been identified, a global characterization of HBx interactome has not been reported. In this study, we have identified a total of 127 HBx-interacting proteins by a profound GST pull-down assay coupled with mass spectrometry, and constructed an HBx-interactome network with a series of bioinformatics approaches. Our results demonstrate an integrated physical association of HBx and host proteins which may help us explore the complicated mechanisms of HBV manipulation on host cellular functions. In addition, we validated one of the identified HBx-binding partners, apolipoprotein A-I (apoA-I), which played a significant inhibitory effect on HBV secretion, indicating a crucial role of the HBx-apoA-I axis in HBV life cycle.
Journal of Translational Medicine | 2013
Jun Zeng; Xudan Yang; Lin Cheng; Rui Liu; Yunlong Lei; Dandan Dong; Fanghua Li; Quek Choon Lau; Longfei Deng; Edouard C. Nice; Ke Xie; Canhua Huang
BackgroundThe chemokine CXCL14 has been reported to play an important role in the progression of many malignancies such as breast cancer and papillary thyroid carcinoma, but the role of CXCL14 in colorectal carcinoma (CRC) remains to be established. The purpose of this study was to investigate the expression pattern and significance of CXCL14 in CRC progression.Method265 colorectal carcinoma specimens and 129 matched adjacent normal colorectal mucosa specimens were collected. Expression of CXCL14 in clinical samples was examined by immunostaining. The effect of CXCL14 on colorectal carcinoma cell proliferation was measured by MTT assay, BrdU incorporation assay and colony formation assay. The impact of CXCL14 on migration and invasion of colorectal carcinoma cells was determined by transwell assay and Matrigel invasion assay, respectively.ResultsCXCL14 expression was significantly up-regulated in tumor tissues compared with adjacent nontumorous mucosa tissues (P < 0.001). Tumoral CXCL14 expression levels were significantly correlated with TNM (Tumor-node-metastasis) stage, histodifferentiation, and tumor size. In multivariate Cox regression analysis, high CXCL14 expression in tumor specimens (n = 91) from stage I/II patients was associated with increased risk for disease recurrence (risk ratio, 2.92; 95% CI, 1.15-7.40; P = 0.024). Elevated CXCL14 expression in tumor specimens (n = 135) from stage III/IV patients correlated with worse overall survival (risk ratio, 3.087; 95% CI, 1.866-5.107; P < 0.001). Functional studies demonstrated that enforced expression of CXCL14 in SW620 colorectal carcinoma cells resulted in more aggressive phenotypes. In contrast, knockdown of CXCL14 expression could mitigate the proliferative, migratory and invasive potential of HCT116 colorectal carcinoma cells.ConclusionTaken together, CXCL14 might be a potential novel prognostic factor to predict the disease recurrence and overall survival and could be a potential target of postoperative adjuvant therapy in CRC patients.