Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yunping Dai is active.

Publication


Featured researches published by Yunping Dai.


Cell Research | 2011

Highly efficient modification of beta-lactoglobulin (BLG) gene via zinc-finger nucleases in cattle

Shengli Yu; Junjie Luo; Zhiyuan Song; Fangrong Ding; Yunping Dai; Ning Li

Highly efficient modification of beta-lactoglobulin (BLG) gene via zinc-finger nucleases in cattle


PLOS ONE | 2008

Cattle Mammary Bioreactor Generated by a Novel Procedure of Transgenic Cloning for Large-Scale Production of Functional Human Lactoferrin

Penghua Yang; Jianwu Wang; Guochun Gong; Xiuzhu Sun; Ran Zhang; Zhuo Du; Ying Liu; Rong Li; Fangrong Ding; Bo Tang; Yunping Dai; Ning Li

Large-scale production of biopharmaceuticals by current bioreactor techniques is limited by low transgenic efficiency and low expression of foreign proteins. In general, a bacterial artificial chromosome (BAC) harboring most regulatory elements is capable of overcoming the limitations, but transferring BAC into donor cells is difficult. We describe here the use of cattle mammary bioreactor to produce functional recombinant human lactoferrin (rhLF) by a novel procedure of transgenic cloning, which employs microinjection to generate transgenic somatic cells as donor cells. Bovine fibroblast cells were co-microinjected for the first time with a 150-kb BAC carrying the human lactoferrin gene and a marker gene. The resulting transfection efficiency of up to 15.79×10−2 percent was notably higher than that of electroporation and lipofection. Following somatic cell nuclear transfer, we obtained two transgenic cows that secreted rhLF at high levels, 2.5 g/l and 3.4 g/l, respectively. The rhLF had a similar pattern of glycosylation and proteolytic susceptibility as the natural human counterpart. Biochemical analysis revealed that the iron-binding and releasing properties of rhLF were identical to that of native hLF. Importantly, an antibacterial experiment further demonstrated that rhLF was functional. Our results indicate that co-microinjection with a BAC and a marker gene into donor cells for somatic cell cloning indeed improves transgenic efficiency. Moreover, the cattle mammary bioreactors generated with this novel procedure produce functional rhLF on an industrial scale.


PLOS ONE | 2011

Characterization of Bioactive Recombinant Human Lysozyme Expressed in Milk of Cloned Transgenic Cattle

Bin Yang; Jianwu Wang; Bo Tang; Yufang Liu; Chengdong Guo; Penghua Yang; Tian Yu; Rong Li; Jianmin Zhao; Lei Zhang; Yunping Dai; Ning Li

Background There is great potential for using transgenic technology to improve the quality of cow milk and to produce biopharmaceuticals within the mammary gland. Lysozyme, a bactericidal protein that protects human infants from microbial infections, is highly expressed in human milk but is found in only trace amounts in cow milk. Methodology/Principal Findings We have produced 17 healthy cloned cattle expressing recombinant human lysozyme using somatic cell nuclear transfer. In this study, we just focus on four transgenic cattle which were natural lactation. The expression level of the recombinant lysozyme was up to 25.96 mg/L, as measured by radioimmunoassay. Purified recombinant human lysozyme showed the same physicochemical properties, such as molecular mass and bacterial lysis, as its natural counterpart. Moreover, both recombinant and natural lysozyme had similar conditions for reactivity as well as for pH and temperature stability during in vitro simulations. The gross composition of transgenic and non-transgenic milk, including levels of lactose, total protein, total fat, and total solids were not found significant differences. Conclusions/Significance Thus, our study not only describes transgenic cattle whose milk offers the similar nutritional benefits as human milk but also reports techniques that could be further refined for production of active human lysozyme on a large scale.


Cell Research | 2011

Generation of induced pluripotent stem cells from bovine embryonic fibroblast cells

Xiaoping Han; Jianyong Han; Fangrong Ding; Suying Cao; Seong Soo Lim; Yunping Dai; Ran Zhang; Yurui Zhang; Bing Lim; Ning Li

Embryonic stem cell (ES cell) lines were first generated by culturing mouse inner cell mass (ICM) on feeder layers in 1981 [1]. However, in large domestic animals, attempts to establish ES cell lines from ICM of blastocysts or the later epiblast have not been successful. This has hindered the efficient production of genetically modified livestocks by using ES-based approaches. Recently, it was found that ectopic expression of various combinations of transcription factors is able to reprogram somatic cells to a pluripotent state [2-5]. These induced pluripotent stem (iPS) cells show similarities to embryo-derived ES cells and can be used to produce viable mice through tetraploid complementation [6, 7]. So far, iPS cells of several mammalian species have been successfully generated [2, 3, 8-12]. In this letter, we report the first establishment of bovine iPS cells using defined transcription factors and a modified culture medium. cDNAs coding for the bovine OCT4 (also named POU5F1), SOX2, KLF4, MYC, LIN28, and NANOG genes were cloned into pMXs retroviral vector. The pMXs plasmids containing human OCT4, SOX2, KLF4, and c-MYC genes were all purchased from Addgene. GP2-293 cells were used as the packaging cell line for retroviral production. Bovine fibroblasts used in this study were derived from an E55 Western Shandong Yellow cattle fetus. Three sets of factors, termed b4TF, b6TF, and h4TF, were used to transduce cells by overnight retroviral infection, respectively. Whereas the former two included only bovine factors (b4TF: bOCT4, bSOX2, bMYC, bKLF4; b6TF: bOCT4, bSOX2, bKLF4, bMYC, bLIN28, bNANOG), the latter employed only human factors (hOCT4, hSOX2, hc-MYC, hKLF4). On day 2, the infected cells were harvested by trypsinization and plated onto mitomycin C-treated MEF feeders at a density of 1 × 10 cells per 100-mm dish. The next day after being seeded onto feeders, growing cells were cultured in iPS media (Figure 1A and Supplementary information, Table S1). Bovine iPS (hereinafter named biPS) cells with a mouse ES-like morphology were detected after ~3 npg Cell Research (2011) 21:1509-1512.


Biology of Reproduction | 2005

Aberrant Gene Expression in Organs of Bovine Clones That Die Within Two Days after Birth

Shijie Li; Yanxin Li; Weihua Du; Lei Zhang; Shuyang Yu; Yunping Dai; Chunjiang Zhao; Ning Li

Abstract Cloning by somatic nuclear transfer is an inefficient process in which some of the cloned animals die shortly after birth and display organ abnormalities. In an effort to determine the possible genetic causes of neonatal death and organ abnormalities, we used real-time quantitative reverse transcription-polymerase chain reaction to examine expression patterns of eight developmentally important genes (PCAF, Xist, FGFR2, PDGFRa, FGF10, BMP4, Hsp70.1, and VEGF) in six organs (heart, liver, spleen, lung, kidney, and brain) of both cloned bovines that died soon after birth (n = 9) and normal control calves produced by artificial insemination. In somatic cloning of cattle, fibroblasts have often been used for doner nuclei, and the effect of the age of the fibroblast donor cells on gene expression profiles was investigated. Aberrant expressions of seven genes were found in these clones. The majority of aberrantly expressed genes were common in clones derived from adult fibroblast (AF) and in clones derived from fetal fibroblast (FF) compared to controls, whereas some genes were dysregulated either in AF cell-derived or in FF cell-derived clones. For the studied genes, kidney was the organ least affected by gene dysregulation, and heart was the organ most affected, in which five genes were aberrant. Most dysregulations (12 of 19) were up-regulation, but PDGFRa only showed down-regulation. VEGF, BMP-4, PCAF, and Hsp70.1 were extremely dysregulated, whereas the other four genes had a low level of gene dysregulation. Our results suggest that the aberrant gene expression occurred in most tissues of cloned bovines that died soon after birth. For each specific gene, aberrant expression resulting from nuclear transfer was tissue-specific. Because these genes play important roles in embryo development and organogenesis, the aberrant transcription patterns detected in these clones may contribute to the defects of organs reported in neonatal death of clones.


Glycobiology | 2011

Comprehensive characterization of the site-specific N-glycosylation of wild-type and recombinant human lactoferrin expressed in the milk of transgenic cloned cattle

Tian Yu; Chengdong Guo; Jianwu Wang; Piliang Hao; Shunchao Sui; Xiuping Chen; Ran Zhang; Peipei Wang; Guangli Yu; Lei Zhang; Yunping Dai; Ning Li

The glycosylation profile of a recombinant protein is important because glycan moieties can play a significant role in the biological properties of the glycoprotein. Here we determined the site-specific N-glycosylation profile of human lactoferrin (hLF) and recombinant human lactoferrin (rhLF) expressed in the milk of transgenic cloned cattle. We used combined approaches of monosaccharide composition analysis, lectin blot, glycan permethylation and sequential exoglycosidase digestion and analyzed samples using high-performance ion chromatography and mass spectrometry (MS). N-glycans from hLF are comprised entirely of highly branched, highly sialylated and highly fucosylated complex-type structures, and many contain Lewis(x) epitopes. Six of these structures are reported here for the first time. However, N-glycans from rhLF are of the high mannose-, hybrid- and complex-type structures, with less N-acetylneuraminic acid and fucose. Some contain a terminal N-acetylgalactosamine-N-acetylglucosamine (LacdiNAc) disaccharide sequence. Monosaccharide composition analysis of rhLF revealed small amounts of N-glycolylneuraminic acid, which were not detected by MS. hLF and rhLF appear to be glycosylated at the same two sites: Asn138 and Asn479. The third putative glycosylation site, at Asn624, is unglycosylated in both hLF and rhLF. The relative abundance of each N-glycan at each site was also determined. The different N-glycosylation profile of rhLF when compared with that of hLF is in consistent with the widely held view that glycosylation is species- and tissue/cell-specific. These data provide an important foundation for further studies of glycan structure/function relationships for hLF and rhLF and help to better understand the glycosylation mechanism in bovine mammary epithelial cells.


Animal Biotechnology | 2007

Construct synthetic gene encoding artificial spider dragline silk protein and its expression in milk of transgenic mice.

Hong-Tao Xu; Baoliang Fan; Shuyang Yu; Yinhua Huang; Zhihui Zhao; Zheng-Xing Lian; Yunping Dai; Lili Wang; Zhaoliang Liu; Jing Fei; Ning Li

Based on the known partial cDNA sequence of dragline silk protein an artificial gene monomer, a 360 bp sequence, was designed and polymerized to encode an analog of dragline silk protein. Six tandem copies of monomer were cloned into pBC1 vector and microinjected into the pronuclei of fertilized Kunming White eggs. Transgenic mice were screened by Polymerase Chain Reaction (PCR) and Southern blot which revealed that 10 mice (5 male, 5 female) among 58 mice were transgenic positive. Milk of five F0 mice and eight F1 mice was analyzed by Western blot, and two F0 mice and seven F1 mice expressed recombinant dragline silk protein. In transgenic mice milk a maximum of concentration of recombinant dragline silk protein was 11.7 mg/L by radioimmunoassay.


Science China-life Sciences | 2006

Production of porcine cloned transgenic embryos expressing green fluorescent protein by somatic cell nuclear transfer

Yunhai Zhang; Dengke Pan; Xiuzhu Sun; Guo-jie Sun; Xiao-Bo Wang; Xiao-Hui Liu; Yan Li; Yunping Dai; Ning Li

In the present study, nuclear transferred embryos (NTEs) were reconstructed by using pig fetal fibroblasts as donors and in vitro matured oocytes as recipients. The effects of G418 selection on donor cells, duration of IVM of prepubertal gilt oocytes and oxygen tension in IVM of oocytes were investigated. The results were as follows: (i) When G418 selected cells expressing GFP were used as donors, the cleavage rate of NTEs decreased drastically in comparison to NTEs derived from donors without antibiotic selection (47.5% vs. 71.6%, p<0.05). For the blastocyst rate, no significant difference was observed between two groups (10% vs. 10.4%, p>0.05). (ii) The rate of nuclear maturation of oocytes increased significantly when IVM duration time was extended from 36 to 42 h (83.6% vs. 96.7%, p<0.05). However, no statistical difference was observed between NTEs derived from oocytes of 36 h IVM group and NTEs from oocytes of 42 h IVM group in the rates of cleavage (59.3% vs. 73.6%, p>0.05) and blastocyst formation (9.3% vs. 13.2%, p>0.05); (iii) no significant difference was observed between NTEs reconstructed from oocytes matured under lower oxygen (7% O2) tension and NTEs derived from oocytes matured under higher oxygen tension (20% O2) in cleavage rate (70.6% vs. 67.1%, p>0.05) and blastocyst rate (11.8% vs. 12.3%, p>0.05). These results suggest that: (i) G418 selection does not have a significant effect on cleavage rate of NTEs expressing GFP. (ii) Nuclear maturation is greatly improved by prolonging IVM duration from 36 to 42 h, while no significant differences were observed for developmental potential of transgenic embryos. Thus IVM 42 h is the better choice in order to obtain maximum number of MII oocytes as recipients. (iii) Lower oxygen tension and higher oxygen tension in IVM have no significant effect on development of cloned embryos.


Journal of Dairy Science | 2008

Expression and Characterization of Bioactive Recombinant Human α-Lactalbumin in the Milk of Transgenic Cloned Cows

Jiu-Feng Wang; Penghua Yang; B. Tang; Xiuzhu Sun; Ran Zhang; Chengdong Guo; Guochun Gong; Y. Liu; R. Li; L. Zhang; Yunping Dai; Ning Li

Improvement of the nutritional value of cow milk with transgenic expression of recombinant human alpha-lactalbumin (alpha-LA) has been previously attempted. However, the detailed characterization of the recombinant protein and analysis of the transgenic milk components are not explored yet. Here, we first report production of healthy transgenic cows by somatic cell nuclear transfer, in which expression of up to 1.55 g/L of recombinant human alpha-LA was achieved. The recombinant human alpha-LA was purified from transgenic milk and displayed physicochemical properties similar to its natural counterpart with respect to molecular weight, structure, and regulatory activity for beta-1,4-galactosyltransferase. Additionally, no N-glycosylation was found in the recombinant human alpha-LA, whereas the endogenous bovine alpha-LA was glycosylated at the unusual site (71)Asn-Ile-(73)Cys. Compared with milk from nontransgenic cows, expression of the transgene did not materially alter milk composition, such as fat and protein content. Our research thus provides scientific evidence supporting the feasibility of humanizing cow milk.


Science China-life Sciences | 2004

Production of transgenic blastocyst by nuclear transfer from different types of somatic cells in cattle

Guochun Gong; Yunping Dai; Baoliang Fan; Huabing Zhu; Haiping Wang; Lili Wang; Changge Fang; Rong Wan; Ying Liu; Rong Li; Ning Li

The present study examined the effects of genetic manipulation to the donor cell and different types of transgenic donor cells on developmental potential of bovine nuclear transfer (NT) embryos. Four types of bovine somatic cells, including granulosa cells, fetal fibroblasts, fetal oviduct epithelial cells and fetal ovary epithelial cells, were transfected with a plasmid (pCE-EGFP-Ires-Neo-dNdB) containing the enhanced green fluorescent protein (EGFP) and neomycin-resistant (Neor) genes by electroporation. After 14 days selection with 800 μg/mL G418, transgenic cell lines from each type of somatic cells were obtained. Nontransgenic granulosa cells and all 4 types of transgenic somatic cells were used as nuclear donor to produce transgenic embryos by NT. There was no significant difference in development rates to the blastocyst stage for NT embryos from transgenic and nontransgenic granulosa cells (44.6% and 42.8%, respectively), and transfer of NT embryos derived from transgenic and nontransgenic granulosa cells to recipients resulted in similar pregnancy rates on day 90 (19% and 25%, respectively). The development rates to the blastocyst stage of NT embryos were significantly different among different types of transgenic donor cells (P<0.05). Blastocyst rates from fetal oviduct epithelial cell and granulosa cell (49.1% and 44.6%, respectively) were higher than those from fetal fibroblast (32.7%) and fetal ovary epithelial cell (22.5%). These results suggest that (i) genetic manipulation to donor cells has no negative effect on in vitro and early in vivo developmental competence of bovine NT embryos and (ii) granulosa and fetal oviduct epithelial cells can be used to produce transgenic bovine NT embryos more efficiently. In addition, GFP can be used to select transgenic NT embryos as a non-invasive selective marker.

Collaboration


Dive into the Yunping Dai's collaboration.

Top Co-Authors

Avatar

Ning Li

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Lili Wang

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Rong Li

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Lei Zhang

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Bo Tang

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Haiping Wang

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Guochun Gong

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Shaohua Wang

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Xiuzhu Sun

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Ying Liu

China Agricultural University

View shared research outputs
Researchain Logo
Decentralizing Knowledge