Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yunping Hu is active.

Publication


Featured researches published by Yunping Hu.


Nature Genetics | 2014

Whole-exome and targeted gene sequencing of gallbladder carcinoma identifies recurrent mutations in the ErbB pathway

Maolan Li; Zhou Zhang; Xiaoguang Li; Junyi Ye; Xiangsong Wu; Zhujun Tan; Chang Liu; Baiyong Shen; Xu-An Wang; Wen-Guang Wu; Daizhan Zhou; Di Zhang; Ting Wang; Bingya Liu; Kai Qu; Qichen Ding; Hao Weng; Qian Ding; Jiasheng Mu; Yijun Shu; Run-Fa Bao; Yang Cao; Peizhan Chen; Tian-Yu Liu; Lin Jiang; Yunping Hu; Ping Dong; Jun Gu; Wei Lu; Weibin Shi

Individuals with gallbladder carcinoma (GBC), the most aggressive malignancy of the biliary tract, have a poor prognosis. Here we report the identification of somatic mutations for GBC in 57 tumor-normal pairs through a combination of exome sequencing and ultra-deep sequencing of cancer-related genes. The mutation pattern is defined by a dominant prevalence of C>T mutations at TCN sites. Genes with a significant frequency (false discovery rate (FDR) < 0.05) of non-silent mutations include TP53 (47.1%), KRAS (7.8%) and ERBB3 (11.8%). Moreover, ErbB signaling (including EGFR, ERBB2, ERBB3, ERBB4 and their downstream genes) is the most extensively mutated pathway, affecting 36.8% (21/57) of the GBC samples. Multivariate analyses further show that cases with ErbB pathway mutations have a worse outcome (P = 0.001). These findings provide insight into the somatic mutational landscape in GBC and highlight the key role of the ErbB signaling pathway in GBC pathogenesis.


Cancer Biology & Therapy | 2014

MALAT1 promotes the proliferation and metastasis of gallbladder cancer cells by activating the ERK/MAPK pathway.

Xiangsong Wu; Xu-An Wang; Wen-Guang Wu; Yunping Hu; Maolan Li; Qian Ding; Hao Weng; Yijun Shu; Tian-Yu Liu; Lin Jiang; Yang Cao; Run-Fa Bao; Jiasheng Mu; Zhujun Tan; Feng Tao; Yingbin Liu

Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), a long non-coding RNA (lncRNA), is associated with metastasis and is an independent prognostic factor for lung cancer. Recent studies have demonstrated that MALAT1 plays an important role in other malignancies. However, little is known about the role of MALAT1 in gallbladder carcinoma (GBC), which is the most common cancer of the biliary tract and has an extremely poor prognosis. In this study, we focused on the expression, biological functions and mechanism of MALAT1 in GBC and found that MALAT1 was significantly upregulated in GBC tissues compared with corresponding non-cancerous tissues. Knockdown of MALAT1 in GBC cell lines using lentivirus-mediated RNA interference significantly inhibited the proliferation and metastasis of the GBC cells both in vitro and in vivo. Furthermore, ERK/MAPK pathway was found to be inactivated in the GBC cell lines after MALAT1 knockdown. These results indicated that MALAT1 might serve as an oncogenic lncRNA that promotes proliferation and metastasis of GBC and activates the ERK/MAPK pathway


Cell Death and Disease | 2017

Unequal prognostic potentials of p53 gain-of-function mutations in human cancers associate with drug-metabolizing activity

Jianrong Xu; Ji-Lin Wang; Yunping Hu; Jin Qian; Xu B; Hui-Min Chen; Zou W; Jing-Yuan Fang

Mutation of p53 is the most common genetic change in human cancer, causing complex effects including not only loss of wild-type function but also gain of novel oncogenic functions (GOF). It is increasingly likely that p53-hotspot mutations may confer different types and magnitudes of GOF, but the evidences are mainly supported by cellular and transgenic animal models. Here we combine large-scale cancer genomic data to characterize the prognostic significance of different p53 mutations in human cancers. Unexpectedly, only mutations on the Arg248 and Arg282 positions displayed significant association with shorter patient survival, but such association was not evident for other hotspot GOF mutations. Gene set enrichment analysis on these mutations revealed higher activity of drug-metabolizing enzymes, including the CYP3A4 cytochrome P450. Ectopic expression of p53 mutant R282W in H1299 and SaOS2 cells significantly upregulated CYP3A4 mRNA and protein levels, and cancer cell lines bearing mortality-associated p53 mutations display higher CYP3A4 expression and resistance to several CYP3A4-metabolized chemotherapeutic drugs. Our results suggest that p53 mutations have unequal GOF activities in human cancers, and future evaluation of p53 as a cancer biomarker should consider which mutation is present in the tumor, rather than having comparison between wild-type and mutant genotypes.


Molecular Cancer | 2015

SPOCK1 as a potential cancer prognostic marker promotes the proliferation and metastasis of gallbladder cancer cells by activating the PI3K/AKT pathway

Yijun Shu; Hao Weng; Yuan-Yuan Ye; Yunping Hu; Run-Fa Bao; Yang Cao; Xu-An Wang; Fei Zhang; Shan-Shan Xiang; Huai-Feng Li; Xiangsong Wu; Maolan Li; Lin Jiang; Wei Lu; Bao-San Han; Zhi-Gang Jie; Yingbin Liu

BackgroundGallbladder cancer (GBC) is a leading cause of cancer-related death worldwide, and its prognosis remains poor, with 5-year survival of approximately 5%. In this study, we analyzed the involvement of a novel proteoglycan, Sparc/osteonectin, cwcv, and kazal-like domains proteoglycan 1 (SPOCK1), in the tumor progression and prognosis of human GBC.MethodsSPOCK1 expression levels were measured in fresh samples and stored specimens of GBC and adjacent nontumor tissues. The effect of SPOCK1 on cell growth, DNA replication, migration and invasion were explored by Cell Counting Kit-8, colony formation, EdU retention assay, wound healing, and transwell migration assays, flow cytometric analysis, western blotting, and in vivo tumorigenesis and metastasis in nude mice.ResultsSPOCK1 mRNA and protein levels were increased in human GBC tissues compared with those in nontumor tissues. Immunohistochemical analysis indicated that SPOCK1 levels were increased in tumors that became metastatic, compared with those that did not, which was significantly associated with histological differentiation and patients with shorter overall survival periods. Knockdown of SPOCK1 expression by lentivirus-mediated shRNA transduction resulted in significant inhibition of GBC cell growth, colony formation, DNA replication, and invasion in vitro. The knockdown cells also formed smaller xenografted tumors than control GBC cells in nude mice. Overexpression of SPOCK1 had the opposite effects. In addition, SPOCK1 promoted cancer cell migration and epithelial-mesenchymal transition by regulating the expression of relevant genes. We found that activation of the PI3K/Akt pathway was involved in the oncogenic functions of SPOCK1 in GBC.ConclusionsSPOCK1 activates PI3K/Akt signaling to block apoptosis and promote proliferation and metastasis by GBC cells in vitro and in vivo. Levels of SPOCK1 increase with the progression of human GBC. SPOCK1 acts as an oncogene and may be a prognostic factor or therapeutic target for patients with GBC.


Cancer Letters | 2015

Fibronectin promotes cell proliferation and invasion through mTOR signaling pathway activation in gallbladder cancer

Yang Cao; Xiyong Liu; Wei Lu; Yuanyuan Chen; Xiangsong Wu; Maolan Li; Xu’an Wang; Fei Zhang; Lin Jiang; Yijian Zhang; Yunping Hu; Shan-Shan Xiang; Yijun Shu; Run-Fa Bao; Huai-Feng Li; Wen-Guang Wu; Hao Weng; Yun Yen; Yingbin Liu

Fibronectin (FN), a heterodimeric glycoprotein overexpressed in several types of tumors, has been implicated in cancer progression via the activation of integrin-mediated pro-oncogenic pathways. The FN level in human bile fluid is dramatically increased in malignant biliary diseases; however, FN expression and its biological functions in gallbladder cancer (GBC) remain unknown. In this study, we found that FN was overexpressed in GBC tissues and was associated with a worse prognosis in GBC patients. In vitro experimental studies indicated that exogenous FN significantly enhanced cell proliferation, invasion and active MMP-9 secretion in human GBC cell lines (GBC-SD and NOZ). Moreover, the key kinases of the mTOR signaling pathway, including FAK, Akt, mTOR and 4E-BP1, were markedly activated in a time-dependent manner in FN-treated GBC-SD and NOZ cells. The IHC statistical analyses validated that FN expression was positively correlated with the phosphorylation levels of the 4E-BP1 protein in GBC tissues. Furthermore, rapamycin, a specific inhibitor of mTOR, almost completely blocked FN-induced phosphorylation of 4E-BP1 and also partially abrogated the stimulatory effects of FN on GBC cell proliferation and invasion. In vivo, FN treatment significantly promoted the proliferation and metastasis of GBC cells and markedly activated Akt/mTOR/4E-BP1 signaling cascade. These findings demonstrate that FN may play a critical role in the modulation of cell proliferation and invasion via mTOR signaling pathway activation during GBC progression.


Osteoporosis International | 2011

Age trends for hip geometry in Chinese men and women and the association with femoral neck fracture

Hao Zhang; Yunping Hu; Zhen-lin Zhang

SummaryHip dual-energy X-ray absorptiometry (DXA) images were used to calculate hip bone mineral density (BMD) and hip geometry parameters of 18,502 healthy Chinese people (14,435 women and 4,067 men), 254 subjects sustained a femoral neck fracture and 254 age- and sex-matched controls. Our study showed that thinning of the cortical shell and deterioration of the strength index (SI) in femoral neck with aging in both Chinese men and women. SI may be a risk factor for hip fracture in Chinese women.IntroductionThe purpose of this study was to evaluate age-related trends in the hip geometry of healthy Chinese men and women and to examine whether changes in hip geometric parameters is one of the risk factors of hip fracture.MethodsWe recruited 14,435 women and 4,067 men as the study population. There were 254 subjects (216 women, 38 men) who had sustained a femoral neck fracture; 254 age- and sex-matched healthy persons served as controls. Hip DXA images were used to calculate hip BMD and hip geometry parameters, including the hip axis length (HAL), cross-sectional moment of inertia (CSMI), cross-sectional area (CSA), neck–shaft angle (NSA) and femoral SI.ResultsHip BMD, CSMI, CSA and SI showed significantly negative correlations with age. However, after adjustment for height and weight, HAL increased with age, and there was no strong correlation between CSMI and age in either sex. In both genders, hip BMD and CSA were significant lower in fracture cases compared with controls. After adjustment for hip BMD, in women only smaller SI (odds ratio [OR] 1.53; 95% confidence interval [CI], 1.04–2.26) was predictive of hip fracture but in men, none of the geometry parameters was associated with hip fracture risk.ConclusionsThis study demonstrated thinning of the cortical shell and deterioration of the resistance to bending and SI with aging in femoral neck in Chinese men and women. SI may be a risk factor for hip fracture that is independent of BMD measurement in Chinese women.


Drug Design Development and Therapy | 2015

20(S)-ginsenoside Rg3 promotes senescence and apoptosis in gallbladder cancer cells via the p53 pathway.

Zhang F; Maolan Li; Xiangsong Wu; Yunping Hu; Yang Cao; Xu-An Wang; Shan-Shan Xiang; Huai-Feng Li; Lin Jiang; Tan Z; Wei Lu; Hao Weng; Yongqian Shu; Wei Gong; Yijian Zhang; Shi W; Dong P; Gu J; Yingbin Liu

Gallbladder cancer (GBC), the most frequent malignancy of the biliary tract, is associated with high mortality and extremely poor prognosis. 20(S)-ginsenoside Rg3 (20(S)-Rg3) is a steroidal saponin with high pharmacological activity. However, the anticancer effect of 20(S)-Rg3 in human GBC has not yet been determined. In this study, we primarily found that 20(S)-Rg3 exposure suppressed the survival of both NOZ and GBC-SD cell lines in a concentration-dependent manner. Moreover, induction of cellular senescence and G0/G1 arrest by 20(S)-Rg3 were accompanied by a large accumulation of p53 and p21 as a result of murine double minute 2 (MDM2) inhibition. 20(S)-Rg3 also caused a remarkable increase in apoptosis via the activation of the mitochondrial-mediated intrinsic caspase pathway. Furthermore, intraperitoneal injection of 20(S)-Rg3 (20 or 40 mg/kg) for 3 weeks markedly inhibited the growth of xenografts in nude mice. Our results demonstrated that 20(S)-Rg3 potently inhibited growth and survival of GBC cells both in vitro and in vivo. 20(S)-Rg3 attenuated GBC growth probably via activation of the p53 pathway, and subsequent induction of cellular senescence and mitochondrial-dependent apoptosis. Therefore, 20(S)-Rg3 may be a potential chemotherapeutic agent for GBC therapy.


Cancer Cell International | 2014

Ursolic acid induces cell cycle arrest and apoptosis of gallbladder carcinoma cells

Hao Weng; Zhujun Tan; Yunping Hu; Yijun Shu; Run-Fa Bao; Lin Jiang; Xiangsong Wu; Maolan Li; Qian Ding; Xu-An Wang; Shan-Shan Xiang; Huai-Feng Li; Yang Cao; Feng Tao; Yingbin Liu

BackgroundUrsolic acid (UA), a plant extract used in traditional Chinese medicine, exhibits potential anticancer effects in various human cancer cell lines in vitro. In the present study, we evaluated the anti-tumoral properties of UA against gallbladder carcinoma and investigated the potential mechanisms responsible for its effects on proliferation, cell cycle arrest and apoptosis in vitro.MethodsThe anti-tumor activity of UA against GBC-SD and SGC-996 cells was assessed using MTT and colony formation assays. An annexin V/PI double-staining assay was used to detect cell apoptosis. Cell cycle changes were detected using flow cytometry. Rhodamine 123 staining was used to assess the mitochondrial membrane potential (ΔΨm) and validate UA’s ability to induce apoptosis in both cell lines. The effectiveness of UA in gallbladder cancer was further verified in vivo by establishing a xenograft GBC model in nude mice. Finally, the expression levels of cell cycle- and apoptosis-related proteins were analyzed by western blotting.ResultsOur results suggest that UA can significantly inhibit the growth of gallbladder cancer cells. MTT and colony formation assays indicated dose-dependent decreases in cell proliferation. S-phase arrest was observed in both cell lines after treatment with UA. Annexin V/PI staining suggested that UA induced both early and late phases of apoptosis. UA also decreased ΔΨm and altered the expression of molecules regulating the cell cycle and apoptosis. In vivo study showed intraperitoneally injection of UA can significantly inhibited the growth of xenograft tumor in nude mice and the inhibition efficiency is dose related. Activation of caspase-3,-9 and PARP indicated that mitochondrial pathways may be involved in UA-induced apoptosis.ConclusionsTaken together, these results suggest that UA exhibits significant anti-tumor effects by suppressing cell proliferation, promoting apoptosis and inducing 7cell cycle arrest both in vitro and in vivo. It may be a potential agent for treating gallbladder cancer.


Cellular Physiology and Biochemistry | 2015

Roundabout4 suppresses glioma-induced endothelial cell proliferation, migration and tube formation in vitro by inhibiting VEGR2-mediated PI3K/AKT and FAK signaling pathways.

Cai H; Yixue Xue; Ziyi Li; Yunping Hu; Ziming Wang; Weixia Liu; Liu Y

Background and Aims: Endothelial cell (EC) proliferation, migration, and tube formation are the critical steps for tumor angiogenesis, which is involved in the formation of new tumor blood vessels. Roundabout4 (Robo4), a new member of Robo proteins family, is specifically expressed in endothelial cells. This study aimed to investigate the effects of Robo4 on glioma-induced endothelial cell proliferation, migration and tube formation in vitro. Methods and Results: We found that Robo4 was endogenously expressed in Human Brain Microvascular Endothelial Cells (HBMECs), while Robo4 was significantly down-regulated in endothelial cells cultured in glioma conditioned medium. Robo4 over-expression remarkably suppressed glioma-induced endothelial cell proliferation, migration and tube formation in vitro. In addition, Robo4 influenced the glioma-induced angiogenesis via binding to its ligand Slit2. Further studies demonstrated that the knockdown of Robo4 up-regulated the phosphorylation of VEGFR2, PI3K, AKT and FAK in EC cultured in glioma conditioned medium. VEGFR2 inhibitor SU-1498, AKT inhibitor LY294002 and FAK inhibitor 14 (FAK inhibitor) blocked the Robo4 knockdown-mediated alteration in glioma angiogenesis in vitro. Conclusion: Our results proved that Robo4 suppressed glioma-induced endothelial cell proliferation, migration and tube formation in vitro by inhibiting VEGR2-mediated activation of PI3K/AKT and FAK signaling pathways.


Cell Death & Differentiation | 2017

MicroRNA-29c-5p suppresses gallbladder carcinoma progression by directly targeting CPEB4 and inhibiting the MAPK pathway.

Yijun Shu; Run-Fa Bao; Lin Jiang; Zheng Wang; Xu-An Wang; Fei Zhang; Han-Bin Liang; Huai-Feng Li; Yuan-Yuan Ye; Shan-Shan Xiang; Hao Weng; Xiangsong Wu; Maolan Li; Yunping Hu; Wei Lu; Yijian Zhang; Jian Zhu; Ping Dong; Yingbin Liu

Gallbladder cancer (GBC) is a leading cause of cancer-related deaths worldwide, and its prognosis remains poor, with a 5-year survival rate of ~5%. Given the crucial role of microRNAs (miRNAs) in cancer metastasis, we aimed to analyze the expression and function of the metastasis-associated miRNA miR-29c-5p in GBC.We validated that expression of miR-29c-5p was significantly downregulated in GBC and was closely associated with lymph node metastasis, overall survival and disease-free survival in 40 GBC patients who were followed clinically. Ectopic overexpression of miR-29c-5p dramatically repressed proliferation, metastasis, and colony formation and induced apoptosis in vitro, and it suppressed tumorigenicity in vivo through the MAPK pathway. Cytoplasmic polyadenylation element binding protein 4 (CPEB4) was identified as a critical effector target of miR-29c-5p. Enforced expression of miR-29c-5p significantly inhibited the expression of CPEB4, and restoration of CPEB4 expression reversed the inhibitory effects of miR-29c-5p on GBC cell proliferation and metastasis. Transforming growth factor-β (TGF-β) upregulated CPEB4 by downregulating miR-29c-5p, leading to MAPK pathway activation. In conclusion, the TGF-β/miR-29c-5p/CPEB4 axis has a pivotal role in the pathogenesis and poor prognosis of GBC, suggesting that miR-29c-5p is a tumor-suppressive miRNA that may serve as potential prognostic biomarker or therapeutic target for GBC.

Collaboration


Dive into the Yunping Hu's collaboration.

Top Co-Authors

Avatar

Lin Jiang

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Yingbin Liu

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Maolan Li

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Yijian Zhang

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Huai-Feng Li

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Xiangsong Wu

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Yijun Shu

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Hao Weng

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Run-Fa Bao

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Shan-Shan Xiang

Shanghai Jiao Tong University

View shared research outputs
Researchain Logo
Decentralizing Knowledge