Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yunyu Shi is active.

Publication


Featured researches published by Yunyu Shi.


Genes & Development | 2011

Structure of a CENP-A–histone H4 heterodimer in complex with chaperone HJURP

Hao Hu; Yang Liu; Mingzhu Wang; Junnan Fang; Hongda Huang; Na Yang; Yanbo Li; Jianyu Wang; Xuebiao Yao; Yunyu Shi; Guohong Li; Rui-Ming Xu

In higher eukaryotes, the centromere is epigenetically specified by the histone H3 variant Centromere Protein-A (CENP-A). Deposition of CENP-A to the centromere requires histone chaperone HJURP (Holliday junction recognition protein). The crystal structure of an HJURP-CENP-A-histone H4 complex shows that HJURP binds a CENP-A-H4 heterodimer. The C-terminal β-sheet domain of HJURP caps the DNA-binding region of the histone heterodimer, preventing it from spontaneous association with DNA. Our analysis also revealed a novel site in CENP-A that distinguishes it from histone H3 in its ability to bind HJURP. These findings provide key information for specific recognition of CENP-A and mechanistic insights into the process of centromeric chromatin assembly.


Oncogene | 2005

Stabilization of PML nuclear localization by conjugation and oligomerization of SUMO-3

Chuanhai Fu; Kashif Ahmed; Husheng Ding; Xia Ding; Jianping Lan; Zhihong Yang; Yong Miao; Yuanyuan Zhu; Yunyu Shi; Jingde Zhu; He Huang; Xuebiao Yao

The PML gene of acute promyelocytic leukemia (APL) encodes a cell-growth and tumor suppressor. PML localizes to discrete nuclear bodies (NBs) that are disrupted in APL cells, resulting from a reciprocal chromosome translocation t (15;17). Here we show that the nuclear localization of PML is also regulated by SUMO-3, one of the three recently identified SUMO isoforms in human cells. SUMO-3 bears similar subcellular distribution to those of SUMO-1 and -2 in the interphase nuclear body, which is colocalized with PML protein. However, both SUMO-2 and -3 are also localized to nucleoli, a region lacking SUMO-1. Immunoprecipitated PML protein bears SUMO-3 moiety in a covalently modified form, supporting the notion that PML is conjugated by SUMO-3. To determine the functional relevance of SUMO-3 conjugation on PML molecular dynamics, we suppressed SUMO-3 protein expression using a siRNA-mediated approach. Depletion of SUMO-3 markedly reduced the number of PML-containing NBa and their integrity, which is rescued by exogenous expression of SUMO-3 but not SUMO-1 or SUMO-2. The specific requirement of SUMO-3 for PML nuclear localization is validated by expression of SUMO-3 conjugation defective mutant. Moreover, we demonstrate that oligomerization of SUMO-3 is required for PML retention in the nucleus. Taken together, our studies provide first line of evidence showing that SUMO-3 is essential for PML localization and offer novel insight into the pathobiochemistry of APL.


Biophysical Journal | 2003

Molecular Dynamics Simulations of Peptides and Proteins with Amplified Collective Motions

Zhiyong Zhang; Yunyu Shi; Haiyan Liu

We present a novel method that uses the collective modes obtained with a coarse-grained model/anisotropic network model to guide the atomic-level simulations. Based on this model, local collective modes can be calculated according to a single configuration in the conformational space of the protein. In the molecular dynamics simulations, the motions along the slowest few modes are coupled to a higher temperature by the weak coupling method to amplify the collective motions. This amplified-collective-motion (ACM) method is applied to two test systems. One is an S-peptide analog. We realized the refolding of the denatured peptide in eight simulations out of 10 using the method. The other system is bacteriophage T4 lysozyme. Much more extensive domain motions between the N-terminal and C-terminal domain of T4 lysozyme are observed in the ACM simulation compared to a conventional simulation. The ACM method allows for extensive sampling in conformational space while still restricting the sampled configurations within low energy areas. The method can be applied in both explicit and implicit solvent simulations, and may be further applied to important biological problems, such as long timescale functional motions, protein folding/unfolding, and structure prediction.


Mycologia | 2004

Selective induction, purification and characterization of a laccase isozyme from the basidiomycete Trametes sp. AH28-2

Yazhong Xiao; Quan Chen; J. Hang; Yunyu Shi; Jiawen Wu; Y. Z. Hong; Y. P. Wang

The white-rot fungus Trametes sp. AH28-2 can synthesize extracellular laccase by induction in cellobiose-based liquid culture medium. Both yields and composition of laccase isozymes, produced by Trametes sp. AH28-2, would be quite different with induction by different small-molecule aromatic compounds, o-toluidine, guaiacol and 3,5-dihydroxytoluene, which affected microbial growth and the synthesis of laccase isozymes differentially. Higher concentrations of the three inducers could considerably increase laccase isozymes yields but not change the laccase composition. Coculturing of Trametes sp. AH28-2 with either Aspergillus oryzae or Gloeophyllum trabeum showed a few effects on laccase production. Laccase isozyme, laccase B, was selectively induced by 3,5-dihydroxytoluene and purified to homogeneity by two-step chromatography. Purified laccase B appeared as blue, with a broad peak at about 600 nm and a shoulder peak at about 330 nm. The ratio of absorbance at 280 nm to that at 600 nm was 21. Every molecule of laccase B had approximately four copper atoms. Molecular mass of laccase B was estimated to be 74 kDa on SDS-PAGE, 72 kDa by FPLC and was determined to be 71 454 Da by mass spectrum. After being treated with N-glycosidase F, laccase B lost 25% of its molecular mass. The isoelectric point of laccase B was 4.0. Its optimal pH and temperature for oxidizing guaiacol were respectively 4.7 and 45 C. The half-life of the enzyme at 60 C was 14.0 min. The enzyme showed a good stability in a range of pH value of 3.5–7.5. The Km values of the enzyme toward substrates syringaldazine, guaiacol, ABTS, and DMOP were respectively 28.0, 1249.0, 177.0 and 109.8 μM. The corresponding Vmax are 504.0, 1910.0, 117.4 and 159.0 μM min−1 mg−1. In addition, activity of laccase B was inhibited strongly by sodium azide and cyanide, mildly by SDS and trifluoroacetic acid, but only weakly by dimethyl sulfoxide.


Genes & Development | 2012

Combinatorial readout of unmodified H3R2 and acetylated H3K14 by the tandem PHD finger of MOZ reveals a regulatory mechanism for HOXA9 transcription

Yu Qiu; Lei Liu; Chen Zhao; Chuanchun Han; Fudong Li; Jiahai Zhang; Yan Wang; Guohong Li; Yide Mei; Mian Wu; Jihui Wu; Yunyu Shi

Histone acetylation is a hallmark for gene transcription. As a histone acetyltransferase, MOZ (monocytic leukemia zinc finger protein) is important for HOX gene expression as well as embryo and postnatal development. In vivo, MOZ forms a tetrameric complex with other subunits, including several chromatin-binding modules with regulatory functions. Here we report the solution structure of the tandem PHD (plant homeodomain) finger (PHD12) of human MOZ in a free state and the 1.47 Å crystal structure in complex with H3K14ac peptide, which reveals the structural basis for the recognition of unmodified R2 and acetylated K14 on histone H3. Moreover, the results of chromatin immunoprecipitation (ChIP) and RT-PCR assays indicate that PHD12 facilitates the localization of MOZ onto the promoter locus of the HOXA9 gene, thereby promoting the H3 acetylation around the promoter region and further up-regulating the HOXA9 mRNA level. Taken together, our findings suggest that the combinatorial readout of the H3R2/K14ac by PHD12 might represent an important epigenetic regulatory mechanism that governs transcription and also provide a clue of cross-talk between the MOZ complex and histone H3 modifications.


BMC Systems Biology | 2010

A systematic investigation of Escherichia coli central carbon metabolism in response to superoxide stress

Bin Rui; Tie Shen; Hong Zhou; Jianping Liu; Jiusheng Chen; Xiaosong Pan; Haiyan Liu; Jihui Wu; Haoran Zheng; Yunyu Shi

BackgroundThe cellular responses of bacteria to superoxide stress can be used to model adaptation to severe environmental changes. Superoxide stress promotes the excessive production of reactive oxygen species (ROS) that have detrimental effects on cell metabolic and other physiological activities. To antagonize such effects, the cell needs to regulate a range of metabolic reactions in a coordinated way, so that coherent metabolic responses are generated by the cellular metabolic reaction network as a whole. In the present study, we have used a quantitative metabolic flux analysis approach, together with measurement of gene expression and activity of key enzymes, to investigate changes in central carbon metabolism that occur in Escherichia coli in response to paraquat-induced superoxide stress. The cellular regulatory mechanisms involved in the observed global flux changes are discussed.ResultsFlux analysis based on nuclear magnetic resonance (NMR) and mass spectroscopy (MS) measurements and computation provided quantitative results on the metabolic fluxes redistribution of the E. coli central carbon network under paraquat-induced oxidative stress. The metabolic fluxes of the glycolytic pathway were redirected to the pentose phosphate pathway (PP pathway). The production of acetate increased significantly, the fluxes associated with the TCA cycle decreased, and the fluxes in the glyoxylate shunt increased in response to oxidative stress. These global flux changes resulted in an increased ratio of NADPH:NADH and in the accumulation of α-ketoglutarate.ConclusionsMetabolic flux analysis provided a quantitative and global picture of responses of the E. coli central carbon metabolic network to oxidative stress. Systematic adjustments of cellular physiological state clearly occurred in response to changes in metabolic fluxes induced by oxidative stress. Quantitative flux analysis therefore could reveal the physiological state of the cell at the systems level and is a useful complement to molecular systems approaches, such as proteomics and transcription analyses.


Biophysical Chemistry | 2003

Molecular dynamics simulation of the unfolding of the human prion protein domain under low pH and high temperature conditions.

Wei Gu; Tingting Wang; Jiang Zhu; Yunyu Shi; Haiyan Liu

Four 10-ns molecular dynamics (MD) simulations of the human prion protein domain (HuPrP 125-228) in explicit water solution have been performed. Each of the simulations mimicked a different environment of the protein: the neutral pH environment was simulated with all histidine residues neutral and bearing a ND proton and with other titratable side chains charged, the weakly acidic environment was simulated with all titratable side chains charged, the strongly acidic environment was simulated with all titratable side chains protonated. The protein in neutral pH environment was simulated at both ambient (298 K) and higher (350 K) temperatures. The native fold is stable in the neutral pH/ambient temperature simulation. Through out all other simulations, a quite stable core consisted of 10-20 residues around the disulfide bond retain their initial conformations. However, the secondary structures of the protein show changes of various degrees compared to the native fold, parts of the helices unfolded and the beta-sheets extended. Our simulations indicated that the heat-induced unfolding and acid-induced unfolding of HuPrP might follow different pathways: the initial stage of the acid-induced unfolding may include not only changes in secondary structures, but also changes in the tertiary structures. Under the strongly acidic condition, obvious tertiary structure changes take place after 10-ns simulation, the secondary structure elements and the loops becoming more parallel to each other, resulting in a compact state, which was stabilized by a large number of new, non-native side chain-side chain contacts. Such tertiary structure changes were not observed in the higher temperature simulation, and intuitively, they may favor the further extension of the beta-sheets and eventually the agglomeration of multiple protein molecules. The driving forces for this tertiary structure changes are discussed. Two additional 10-ns MD simulations, one with Asp202 protonated and the other with Glu196 protonated compared to the neutral pH simulation, were carried out. The results showed that the stability of the native fold is very subtle and can be strongly disturbed by eliminating a single negative charge at one of such key sites. Correlations of our results with previous experimental and theoretical studies are discussed.


Oncogene | 2008

The mitotic checkpoint kinase NEK2A regulates kinetochore microtubule attachment stability

Jian Du; X Cai; J Yao; Xia Ding; Quan Wu; S Pei; K Jiang; Y Zhang; Wenwen Wang; Yunyu Shi; Y Lai; J Shen; M Teng; He Huang; Q Fei; E S Reddy; Jingde Zhu; Changjiang Jin; Xuebiao Yao

Loss or gain of whole chromosome, the form of chromosome instability commonly associated with cancers is thought to arise from aberrant chromosome segregation during cell division. Chromosome segregation in mitosis is orchestrated by the interaction of kinetochores with spindle microtubules. Our studies show that NEK2A is a kinetochore-associated protein kinase essential for faithful chromosome segregation. However, it was unclear how NEK2A ensures accurate chromosome segregation in mitosis. Here we show that NEK2A-mediated Hec1 (highly expressed in cancer) phosphorylation is essential for faithful kinetochore microtubule attachments in mitosis. Using phospho-specific antibody, our studies show that NEK2A phosphorylates Hec1 at Ser165 during mitosis. Although such phosphorylation is not required for assembly of Hec1 to the kinetochore, expression of non-phosphorylatable mutant Hec1S165 perturbed chromosome congression and resulted in a dramatic increase in microtubule attachment errors, including syntelic and monotelic attachments. Our in vitro reconstitution experiment demonstrated that Hec1 binds to microtubule in low affinity and phosphorylation by NEK2A, which prevents aberrant kinetochore-microtubule connections in vivo, increases the affinity of the Ndc80 complex for microtubules in vitro. Thus, our studies illustrate a novel regulatory mechanism in which NEK2A kinase operates a faithful chromosome attachment to spindle microtubule, which prevents chromosome instability during cell division.


Journal of Biological Chemistry | 2011

Recognition of Unmodified Histone H3 by the First PHD Finger of Bromodomain-PHD Finger Protein 2 Provides Insights into the Regulation of Histone Acetyltransferases Monocytic Leukemic Zinc-finger Protein (MOZ) and MOZ-related factor (MORF)

Su Qin; Lei Jin; Jiahai Zhang; Lei Liu; Peng Ji; Mian Wu; Jihui Wu; Yunyu Shi

MOZ (monocytic leukemic zinc-finger protein) and MORF (MOZ-related factor) are histone acetyltransferases important for HOX gene expression as well as embryo and postnatal development. They form complexes with other regulatory subunits through the scaffold proteins BRPF1/2/3 (bromodomain-PHD (plant homeodomain) finger proteins 1, 2, or 3). BRPF proteins have multiple domains, including two PHD fingers, for potential interactions with histones. Here we show that the first PHD finger of BRPF2 specifically recognizes the N-terminal tail of unmodified histone H3 (unH3) and report the solution structures of this PHD finger both free and in complex with the unH3 peptide. Structural analysis revealed that the unH3 peptide forms a third antiparallel β-strand that pairs with the PHD1 two-stranded antiparallel β-sheet. The binding specificity was determined primarily through the recognition of arginine 2 and lysine 4 of the unH3 by conserved aspartic acids of PHD1 and of threonine 6 of the unH3 by a conserved asparagine. Isothermal titration calorimetry and NMR assays showed that post-translational modifications such as H3R2me2as, H3T3ph, H3K4me, H3K4ac, and H3T6ph antagonized the interaction between histone H3 and PHD1. Furthermore, histone binding by PHD1 was important for BRPF2 to localize to the HOXA9 locus in vivo. PHD1 is highly conserved in yeast NuA3 and other histone acetyltransferase complexes, so the results reported here also shed light on the function and regulation of these complexes.


Genes & Development | 2011

Cooperation of Escherichia coli Hfq hexamers in DsrA binding

Weiwei Wang; Lijun Wang; Yang Zou; Jiahai Zhang; Qingguo Gong; Jihui Wu; Yunyu Shi

Hfq is a bacterial post-transcriptional regulator. It facilitates base-pairing between sRNA and target mRNA. Hfq mediates DsrA-dependent translational activation of rpoS mRNA at low temperatures. rpoS encodes the stationary-phase σ factor σ(S), which is the central regulator in general stress response. However, structural information on Hfq-DsrA interaction is not yet available. Although Hfq is reported to hydrolyze ATP, the ATP-binding site is still unknown. Here, we report a ternary crystal complex structure of Escherichia coli Hfq bound to a major Hfq recognition region on DsrA (AU(6)A) together with ADP, and a crystal complex structure of Hfq bound to ADP. AU(6)A binds to the proximal and distal sides of two Hfq hexamers. ADP binds to a purine-selective site on the distal side and contacts conserved arginine or glutamine residues on the proximal side of another hexamer. This binding mode is different from previously postulated. The cooperation of two different Hfq hexamers upon nucleic acid binding in solution is verified by fluorescence polarization and solution nuclear magnetic resonance (NMR) experiments using fragments of Hfq and DsrA. Fluorescence resonance energy transfer conducted with full-length Hfq and DsrA also supports cooperation of Hfq hexamers upon DsrA binding. The implications of Hfq hexamer cooperation have been discussed.

Collaboration


Dive into the Yunyu Shi's collaboration.

Top Co-Authors

Avatar

Jihui Wu

University of Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

Jiahai Zhang

University of Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

Fudong Li

University of Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

Qingguo Gong

University of Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

Zhiyong Zhang

University of Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

Haiyan Liu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yingqi Xu

University of Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

Hongda Huang

University of Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

Yajun Tang

University of Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

Cun Xin Wang

University of Science and Technology of China

View shared research outputs
Researchain Logo
Decentralizing Knowledge