Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yuqin Qiao is active.

Publication


Featured researches published by Yuqin Qiao.


Acta Biomaterialia | 2012

Antibacterial activity and increased bone marrow stem cell functions of Zn-incorporated TiO2 coatings on titanium

Hongjie Hu; Wenjie Zhang; Yuqin Qiao; Xinquan Jiang; Xuanyong Liu; Chuan Xian Ding

In this work, zinc was incorporated into TiO2 coatings on titanium by plasma electrolytic oxidation to obtain the implant with good bacterial inhibition ability and bone-formability. The porous and nanostructured Zn-incorporated TiO2 coatings are built up from pores smaller than 5 μm and grains 20-100 nm in size, in which the element Zn exists as ZnO. The results obtained from the antibacterial studies suggest that the Zn-incorporated TiO2 coatings can greatly inhibit the growth of both Staphylococcus aureus and Escherichia coli, and the ability to inhibit bacteria can be improved by increasing the Zn content in the coatings. Moreover, the in vitro cytocompatibility evaluation demonstrates that the adhesion, proliferation and differentiation of rat bone marrow stem cells (bMSC) on Zn-incorporated coatings are significantly enhanced compared with Zn-free coating and commercially pure Ti plate, and no cytotoxicity appeared on any of the Zn-incorporated TiO2 coatings. Moreover, bMSC express higher level of alkaline phosphatase activity on Zn-incorporated TiO2 coatings and are induced to differentiate into osteoblast cells. The better antibacterial activity, cytocompatibility and the capability to promote bMSC osteogenic differentiation of Zn-incorporated TiO2 coatings may be attributed to the fact that Zn ions can be slowly and constantly released from the coatings. In conclusion, innovative Zn-incorporated TiO2 coatings on titanium with excellent antibacterial activity and biocompatibility are promising candidates for orthopedic and dental implants.


Colloids and Surfaces B: Biointerfaces | 2014

Osteogenic activity and antibacterial effect of zinc ion implanted titanium

Guodong Jin; Huiliang Cao; Yuqin Qiao; Fanhao Meng; Hongqin Zhu; Xuanyong Liu

Titanium (Ti) and its alloys are widely used as orthopedic and dental implants. In this work, zinc (Zn) was implanted into oxalic acid etched titanium using plasma immersion ion implantation technology. Scanning electron microscopy and X-ray photoelectron spectroscopy were used to investigate the surface morphology and composition of Zn-implanted titanium. The results indicate that the depth profile of zinc in Zn-implanted titanium resembles a Gaussian distribution, and zinc exists in the form of ZnO at the surface whereas in the form of metallic Zn in the interior. The Zn-implanted titanium can significantly stimulate proliferation of osteoblastic MC3T3-E1 cells as well as initial adhesion, spreading activity, ALP activity, collagen secretion and extracellular matrix mineralization of the rat mesenchymal stem cells. The Zn-implanted titanium presents partly antibacterial effect on both Escherichia coli and Staphylococcus aureus. The ability of the Zn-implanted titanium to stimulate cell adhesion, proliferation and differentiation as well as the antibacterial effect on E. coli can be improved by increasing implantation time even to 2 h in this work, indicating that the content of zinc implanted in titanium can easily be controlled within the safe concentration using plasma immersion ion implantation technology. The Zn-implanted titanium with excellent osteogenic activity and partly antibacterial effect can serve as useful candidates for orthopedic and dental implants.


Acta Biomaterialia | 2013

Electron storage mediated dark antibacterial action of bound silver nanoparticles: smaller is not always better.

Huiliang Cao; Yuqin Qiao; Xuanyong Liu; Tao Lu; Ting Cui; Fanhao Meng; Paul K. Chu

Size tunable silver nanoparticles (Ag NPs) are synthesized and incorporated into titanium oxide coatings (TOCs) by manipulating the atomic-scale heating effect of silver plasma immersion ion implantation (Ag PIII). The resulting Ag NPs/TOC composite coatings possess electron storage capability that gives rise to both controlled antibacterial activity and excellent compatibility with mammalian cells. The precipitation behavior of these Ag NPs is qualitatively constrained by the classical nucleation theory. Both photoluminescence (PL) spectra and fluorescence microscopy results demonstrate that larger Ag NPs (5-25 nm) are better at reserving electrons than smaller ones (∼4 nm). The antibacterial activities of the as-sprayed and Ag PIII treated TOCs show that Ag NPs with a different size act distinctively to bacteria: large particles induce serious cytosolic content leakage and lysis of both Staphylococcus aureus and Escherichia coli cells while small ones do not. The excellent activity of larger Ag NPs against bacteria is highly related to their stronger electron storage capability, which can induce accumulation of adequate valence-band holes (h⁺) at the titanium oxide side, arousing oxidation reactions to bacterial cells in the dark. Moreover, the in vitro cell culture assay (using both MG63 and MC3T3 cells) reveals no significant cytotoxicity and even good cytocompatibility on the Ag PIII treated samples. Our results show that, by taking advantage of the boundary property between Ag NP and titanium oxide, the antibacterial activity of Ag NPs can be accurately controlled. This study provides a distinct criterion for the design of nanostructured surfaces such that their osteoblast functions and antibacterial activity are perfectly balanced.


Interface Focus | 2012

Surface modification of biomaterials using plasma immersion ion implantation and deposition.

Tao Lu; Yuqin Qiao; Xuanyong Liu

Although remarkable progress has been made on biomaterial research, the ideal biomaterial that satisfies all the technical requirements and biological functions is not available up to now. Surface modification seems to be a more economic and efficient way to adjust existing conventional biomaterials to meet the current and ever-evolving clinical needs. From an industrial perspective, plasma immersion ion implantation and deposition (PIII&D) is an attractive method for biomaterials owing to its capability of treating objects with irregular shapes, as well as the control of coating composition. It is well acknowledged that the physico-chemical characteristics of biomaterials are the decisive factors greatly affecting the biological responses of biomaterials including bioactivity, haemocompatibility and antibacterial activity. Here, we mainly review the recent advances in surface modification of biomaterials via PIII&D technology, especially titanium alloys and polymers used for orthopaedic, dental and cardiovascular implants. Moreover, the variations of biological performances depending on the physico-chemical properties of modified biomaterials will be discussed.


Colloids and Surfaces B: Biointerfaces | 2014

Antimicrobial activity and cytocompatibility of Ag plasma-modified hierarchical TiO2 film on titanium surface.

Jinhua Li; Xuanyong Liu; Yuqin Qiao; Hongqin Zhu; Chuanxian Ding

To improve the antimicrobial ability and cytocompatibility of biomedical titanium implants, many efforts have been made to modify their surface topography and chemical composition. In this work, Ag plasma-modified hierarchical TiO2 film was fabricated on titanium surface via acid etching to produce micropit, hydrothermal treatment to generate TiO2 nanorod and subsequent plasma immersion ion implantation process to impregnate Ag into TiO2 surface. In view of the potential clinical applications, their antimicrobial activity, bioactivity and cytocompatibility were systematically evaluated. The hierarchical TiO2 film showed enhanced bioactivity and bacteriostatic effect on both microbes due to more negative zeta potential, constructing the first defense line against microbial adhesion by electrostatic repulsion. Addition of embedded Ag remarkably enhanced the antimicrobial efficiency toward both microbes based on Schottky contact without Ag(+) release, establishing the second defense line targeting microbial membrane. Furthermore, the addition of Ag degraded the bioactivity very little and exerted nearly no adverse or even promoted effect on MG63 cell functions, including adhesion, spreading and proliferation. This work illustrates a two-defense-line antimicrobial activity in darkness with both prior electrostatic repulsion to inhibit most microbes adhesion and posterior biocidal action to kill residual ones that luckily infiltrated through the first defense line, and provide proof of concept using both clinically relevant human pathogens. In conclusion, the Ag-embedded hierarchical TiO2 film with excellent antimicrobial activity, bioactivity and cytocompatibility provides a promising candidate for orthopedic and dental implants.


Scientific Reports | 2016

A novel open-porous magnesium scaffold with controllable microstructures and properties for bone regeneration

Mengqi Cheng; Tuerhongjiang Wahafu; Guofeng Jiang; Wei Liu; Yuqin Qiao; Xiaochun Peng; Tao Cheng; Xianlong Zhang; Guo He; Xuanyong Liu

The traditional production methods of porous magnesium scaffolds are difficult to accurately control the pore morphologies and simultaneously obtain appropriate mechanical properties. In this work, two open-porous magnesium scaffolds with different pore size but in the nearly same porosity are successfully fabricated with high-purity Mg ingots through the titanium wire space holder (TWSH) method. The porosity and pore size can be easily, precisely and individually controlled, as well as the mechanical properties also can be regulated to be within the range of human cancellous bone by changing the orientation of pores without sacrifice the requisite porous structures. In vitro cell tests indicate that the scaffolds have good cytocompatibility and osteoblastic differentiation properties. In vivo findings demonstrate that both scaffolds exhibit acceptable inflammatory responses and can be almost fully degraded and replaced by newly formed bone. More importantly, under the same porosity, the scaffolds with larger pore size can promote early vascularization and up-regulate collagen type 1 and OPN expression, leading to higher bone mass and more mature bone formation. In conclusion, a new method is introduced to develop an open-porous magnesium scaffold with controllable microstructures and mechanical properties, which has great potential clinical application for bone reconstruction in the future.


Colloids and Surfaces B: Biointerfaces | 2013

Enhanced apatite-forming ability and cytocompatibility of porous and nanostructured TiO2/CaSiO3 coating on titanium.

Hongjie Hu; Yuqin Qiao; Fanhao Meng; Xuanyong Liu; Chuanxian Ding

To improve the bioactivity and cytocompatibility of biomedical titanium dioxide coating, many efforts have been made to modify its surface composition and topography. Meanwhile, CaSiO(3) was commonly investigated as coating material on titanium implants for fast fixation and firm implant-bone attachment due to its demonstrated bioactivity and osteointegration. In this work, gradient TiO(2)/CaSiO(3) coating on titanium was prepared by a two-step procedure, in which porous and nanostructured TiO(2) coating on titanium was prepared by plasma electrolytic oxidation in advance, and then needle and flake-like CaSiO(3) nanocrystals were deposited on the TiO(2) coating surface by electron beam evaporation. In view of the potential clinical applications, apatite-forming ability of the TiO(2)/CaSiO(3) coating was evaluated by simulated body fluid (SBF) immersion tests, and MG63 cells were cultured on the surface of the coating to investigate its cytocompatibility. The results show that deposition of CaSiO(3) significantly enhanced the apatite-forming ability of nanostructured TiO(2) coating in SBF. Meanwhile, the MG63 cells on TiO(2)/CaSiO(3) coating show higher proliferation rate and vitality than that on TiO(2) coating. In conclusion, the porous and nanostructured TiO(2)/CaSiO(3) coating on titanium substrate with good apatite-forming ability and cytocompatibility is a potential candidate for bone tissue engineering and implant coating.


CrystEngComm | 2013

Hollow magnetic hydroxyapatite microspheres with hierarchically mesoporous microstructure for pH-responsive drug delivery

Kaili Lin; Lei Chen; Peiyi Liu; Zhaoyong Zou; Meili Zhang; Yuhui Shen; Yuqin Qiao; Xuanyong Liu; Jiang Chang

The hollow magnetic hydroxyapatite [Ca10(PO4)6(OH)2, HAp] microspheres with hierarchically mesoporous structures were hydrothermally fabricated using the similar structured CaCO3/Fe3O4 hollow microspheres as the sacrificial hard-templates. The magnetic property, in vitro biocompatibility, drug loading and release properties in different pH solutions were further investigated. The results showed that the magnetic properties for these biocompatible HAp microspheres could be well adjusted by modulation of the Fe3O4 amount, and the drug release rate increased apparently with the decrease of the pH values of the solution medium. The high drug-loading capacity and sustained drug release property suggest that the fabricated multifunctional hollow microspheres have great potential for magnetic and pH responsive drug-delivery applications.


Biomaterials | 2016

Influence of sulfur content on bone formation and antibacterial ability of sulfonated PEEK

Liping Ouyang; Yaochao Zhao; Guodong Jin; Tao Lu; Jinhua Li; Yuqin Qiao; Congqin Ning; Xianlong Zhang; Paul K. Chu; Xuanyong Liu

Polyetheretherketone (PEEK) is desirable in orthopedic and dental applications because its mechanical properties are similar to those of natural bones but the bioinertness and inferior osteoconduction of PEEK have hampered many clinical applications. In this work, PEEK is sulfonated by concentrated sulfuric acid to fabricate a three-dimensional (3D) network. A hydrothermal treatment is subsequently conducted to remove the residues and the temperature is adjusted to obtain different sulfur concentrations. In vitro cell proliferation and real-time PCR analyses disclose enhanced proliferation and osteogenic differentiation of rat bone mesenchymal stem cells (rBMSCs) on the samples with small sulfur concentrations. The in vitro antibacterial evaluation reveals that all the sulfonated samples possess excellent resistance against Staphylococcus aureus and Escherichia coli. The in vivo rat femur implantation model is adopted and X-ray, micro-CT, and histological analyses indicate that not only the premeditated injected bacteria cells are sterilized, but also new bone forms around the samples with small sulfur concentrations. The in vitro and in vivo results reveal that the samples subjected to the hydrothermal treatment to remove excess sulfur have better osseointegration and antibacterial ability and PEEK modified by sulfonation and hydrothermal treatment is promising in orthopedic and dental applications.


Acta Biomaterialia | 2014

Antibacterial activity and cytocompatibility of titanium oxide coating modified by iron ion implantation

Yaxin Tian; Huiliang Cao; Yuqin Qiao; Fanhao Meng; Xuanyong Liu

In this work, zero valent iron nanoparticles (Fezero-NPs) and iron oxide nanoparticles (Feox-NPs) were synthesized at the subsurface and surface regions of titanium oxide coatings (TOCs) by plasma immersion ion implantation. This novel Fe-NPs/TOC system showed negligible iron releasing, great electron storage capability and excellent cytocompatibility in vitro. Importantly, the system showed selective antibacterial ability which can kill Staphylococcus aureus under dark conditions but has no obvious antibacterial effect against Escherichia coli. Owing to a bipolar Schottky barrier between Fezero-NPs/TOC and Fezero-NPs/Feox-NPs, electrons could be captured by the Fezero-NPs bounded at the subsurface region of the coating. This electron storage capability of the Fe-NPs/TOC system induced extracellular electron transportation and accumulation of adequate valence-band holes (h(+)) at the external side, which caused oxidation damage to S. aureus cells in the dark. No obvious biocide effect against E. coli resulted from lack of electron transfer ability between E. coli and substrate materials. This work may open up a novel and controlled strategy to design coatings of implants with antibacterial ability and cytocompatibility for medical applications.

Collaboration


Dive into the Yuqin Qiao's collaboration.

Top Co-Authors

Avatar

Xuanyong Liu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Huiliang Cao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Donghui Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Hongqin Zhu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jinhua Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Feng Peng

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Fanhao Meng

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Guodong Jin

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Shi Qian

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xianlong Zhang

Shanghai Jiao Tong University

View shared research outputs
Researchain Logo
Decentralizing Knowledge