Yuri A. Kuryshev
Charles River Laboratories
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yuri A. Kuryshev.
Scientific Reports | 2013
James Kramer; Carlos Obejero-Paz; Glenn J. Myatt; Yuri A. Kuryshev; Andrew Bruening-Wright; Joseph S. Verducci; Arthur M. Brown
Drug-induced block of the cardiac hERG (human Ether-à-go-go-Related Gene) potassium channel delays cardiac repolarization and increases the risk of Torsade de Pointes (TdP), a potentially lethal arrhythmia. A positive hERG assay has been embraced by regulators as a non-clinical predictor of TdP despite a discordance of about 30%. To test whether assaying concomitant block of multiple ion channels (Multiple Ion Channel Effects or MICE) improves predictivity we measured the concentration-responses of hERG, Nav1.5 and Cav1.2 currents for 32 torsadogenic and 23 non-torsadogenic drugs from multiple classes. We used automated gigaseal patch clamp instruments to provide higher throughput along with accuracy and reproducibility. Logistic regression models using the MICE assay showed a significant reduction in false positives (Type 1 errors) and false negatives (Type 2 errors) when compared to the hERG assay. The best MICE model only required a comparison of the blocking potencies between hERG and Cav1.2.
Journal of Pharmacology and Experimental Therapeutics | 2007
Antonio E. Lacerda; Yuri A. Kuryshev; Yuan Chen; Muthukrishnan Renganathan; Heather Eng; Sanjay J. Danthi; James Kramer; Tianen Yang; Arthur M. Brown
The United States Food and Drug Administration (FDA) uses alfuzosin as an example of a drug having QT risk in humans that was not detected in nonclinical studies. FDA approval required a thorough clinical QT study (TCQS) that was weakly positive at high doses. The FDA has used the clinical/nonclinical discordance as a basis for mandatory TCQS, and this requirement has serious consequences for drug development. For this reason, we re-examined whether nonclinical signals of QT risk for alfuzosin were truly absent. Alfuzosin significantly prolonged action potential duration (APD)60 in rabbit Purkinje fibers (p < 0.05) and QT in isolated rabbit hearts (p < 0.05) at the clinically relevant concentration of 300 nM. In man, the QT interval corrected with Fridericias formula increased 7.7 ms, which exceeds the 5.0-ms threshold for a positive TCQS. Effects on hKv11.1, hKv4.3, and hKv7.1/hKCNE1 potassium currents and calcium current were not involved. At 300 nM, ∼30× Cmax, alfuzosin significantly increased whole-cell peak sodium (hNav1.5) current (p < 0.05), increased the probability of late hNav1.5 single-channel openings, and significantly shortened the slow time constant for recovery from inactivation. Alfuzosin also increased hNav1.5 burst duration and number of openings per burst between 2- and 3-fold. Alfuzosin is a rare example of a non-antiarrhythmic drug that delays cardiac repolarization not by blocking hKv11.1 potassium current, but by increasing sodium current. Nonclinical studies clearly show that alfuzosin increases plateau potential and prolongs APD and QT, consistent with QT prolongation in man. The results challenge the FDA grounds for the absolute primacy of TCQS based on the claim of a false-negative, nonclinical study on alfuzosin.
Journal of Cardiovascular Pharmacology | 2010
Yuri A. Kuryshev; Andrew Bruening-Wright; Arthur M. Brown; Glenn E. Kirsch
Methadone, a synthetic opioid for treatment of chronic pain and withdrawal from opioid dependence, has been linked to QT prolongation, potentially fatal torsades de pointes, and sudden cardiac death. Concomitant use of diazepam or other benzodiazepines in methadone maintenance treatment can increase the risk of sudden death. Therefore, we determined the effects of methadone and diazepam singly and in combination on cardiac action potentials (APs) and on the major ion channels responsible for cardiac repolarization. Using patch clamp recording in human stem cell-derived cardiomyocytes and stably transfected mammalian cells, we found that methadone produced concentration-dependent AP prolongation and ion channel block at low micromolar concentrations: hERG (IC50 = 1.7 μM), hNav1.5 (11.2 μM tonic block; 5.5 μM phasic block), and hCav1.2 (26.7 μM tonic block; 7.7 μM phasic block). Methadone was less potent in hKv4.3/hKChIP2.2 (IC50 = 39.0 μM) and hKvLQT1/hminK (53.3 μM). In contrast, diazepam blocked channels only at much higher concentrations and had no effect on AP duration at 1 μM. However, coadministration of 1-μM diazepam with methadone caused a statistically significant increase in AP duration and a 4-fold attenuation of hNav1.5 block (IC50 values were 44.2 μM and 26.6 μM, respectively, for tonic and phasic block), with no significant effect on methadone-induced block of hERG, hCav1.2, hKv4.3/hKChIP2.2, and hKvLQT1/hminK channels. Thus, although diazepam alone does not prolong the QT interval, the relief of methadone-induced Na+ channel block may leave hERG K+ channel block uncompensated, thereby increasing cardiac risk.
Assay and Drug Development Technologies | 2014
Yuri A. Kuryshev; Arthur M. Brown; Emir Duzic; Glenn E. Kirsch
Abstract Voltage-gated Ca2+ channels play essential roles in control of neurosecretion and muscle contraction. The pharmacological significance of Cav channels stem from their identification as the molecular targets of calcium blockers used in the treatment of cardiovascular diseases, such as hypertension, angina, and arrhythmia, and neurologic diseases, such as pain and seizure. It has been proposed that state-dependent Cav inhibitors, that is, those that preferentially bind to channels in open or inactivated states, may improve the therapeutic window over relatively state-independent Cav inhibitors. High-throughput fluorescent-based functional assays have been useful in screening chemical libraries to identify Cav inhibitors. However, hit confirmation, mechanism of action, and subtype selectivity are better suited to automated patch clamp assays that have sufficient capacity to handle the volume of compounds identified during screening, even of modest sized libraries (≤500,000 compounds), and the flexible voltage control that allows evaluation of state-dependent drug blocks. IonWorks™ Barracuda (IWB), the newest generation of IonWorks instruments, provides the opportunity to accelerate the Cav drug discovery studies in an automated patch clamp platform in 384-well format capable of medium throughput screening and profiling studies. We have validated hCav1.2, hCav2.1, hCav2.2, and hCav3.2 channels assays on the IWB platform (population patch clamp mode) and demonstrated that the biophysical characteristics of the channels (activation, inactivation, and steady-state inactivation) obtained with the IWB system are consistent with known subtype-specific characteristics. Using standard reference compounds (nifedipine, BAY K8644, verapamil, mibefradil, and pimozide), we demonstrated subtype-selective and state- and use-dependent characteristics of drug–channel interactions. Here we describe the design and validation of novel robust high-throughput Cav channel assays on the IWB platform. The assays can be used to screen focused compound libraries for state-dependent Cav channel antagonists, to prioritize compounds for potency or to counterscreen for Cav subtype selectivity.
Clinical Pharmacology & Therapeutics | 2018
Zhihua Li; Bradley J. Ridder; Xiaomei Han; Wendy W. Wu; Jiansong Sheng; Phu N. Tran; Min Wu; Aaron Randolph; Ross H. Johnstone; Gary R. Mirams; Yuri A. Kuryshev; James Kramer; Caiyun Wu; William J. Crumb; David G. Strauss
The International Council on Harmonization (ICH) S7B and E14 regulatory guidelines are sensitive but not specific for predicting which drugs are pro‐arrhythmic. In response, the Comprehensive In Vitro Proarrhythmia Assay (CiPA) was proposed that integrates multi‐ion channel pharmacology data in vitro into a human cardiomyocyte model in silico for proarrhythmia risk assessment. Previously, we reported the model optimization and proarrhythmia metric selection based on CiPA training drugs. In this study, we report the application of the prespecified model and metric to independent CiPA validation drugs. Over two validation datasets, the CiPA model performance meets all pre‐specified measures for ranking and classifying validation drugs, and outperforms alternatives, despite some in vitro data differences between the two datasets due to different experimental conditions and quality control procedures. This suggests that the current CiPA model/metric may be fit for regulatory use, and standardization of experimental protocols and quality control criteria could increase the model prediction accuracy even further.
SLAS DISCOVERY: Advancing Life Sciences R&D | 2017
Lucas C. Armstrong; Glenn E. Kirsch; Nikolai Fedorov; Caiyun Wu; Yuri A. Kuryshev; Abby Sewell; Zhiqi Liu; Arianne L. Motter; Carmine S. Leggett; Michael S. Orr
Nicotine, the addictive component of tobacco products, is an agonist at nicotinic acetylcholine receptors (nAChRs) in the brain. The subtypes of nAChR are defined by their α- and β-subunit composition. The α6β2β3 nAChR subtype is expressed in terminals of dopaminergic neurons that project to the nucleus accumbens and striatum and modulate dopamine release in brain regions involved in nicotine addiction. Although subtype-dependent selectivity of nicotine is well documented, subtype-selective profiles of other tobacco product constituents are largely unknown and could be essential for understanding the addiction-related neurological effects of tobacco products. We describe the development and validation of a recombinant cell line expressing human α6/3β2β3V273S nAChR for screening and profiling assays in an automated patch clamp platform (IonWorks Barracuda). The cell line was pharmacologically characterized by subtype-selective and nonselective reference agonists, pore blockers, and competitive antagonists. Agonist and antagonist effects detected by the automated patch clamp approach were comparable to those obtained by conventional electrophysiological assays. A pilot screen of a library of Food and Drug Administration–approved drugs identified compounds, previously not known to modulate nAChRs, which selectively inhibited the α6/3β2β3V273S subtype. These assays provide new tools for screening and subtype-selective profiling of compounds that act at α6β2β3 nicotinic receptors.
Journal of Pharmacology and Experimental Therapeutics | 2000
Yuri A. Kuryshev; Arthur M. Brown; Lin Wang; Claude R. Benedict; David Rampe
Journal of Pharmacological and Toxicological Methods | 2005
Barbara A. Wible; Peter Hawryluk; Eckhard Ficker; Yuri A. Kuryshev; Glenn E. Kirsch; Arthur M. Brown
American Journal of Physiology-cell Physiology | 2000
Yuri A. Kuryshev; Tatyana I. Gudz; Arthur M. Brown; Barbara A. Wible
American Journal of Physiology-cell Physiology | 2001
Yuri A. Kuryshev; Barbara A. Wible; T. I. Gudz; A. N. Ramirez; Arthur M. Brown