Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yuriy Mokrousov is active.

Publication


Featured researches published by Yuriy Mokrousov.


Nature Nanotechnology | 2013

Symmetry and magnitude of spin-orbit torques in ferromagnetic heterostructures

Kevin Garello; Ioan Mihai Miron; Can Onur Avci; Frank Freimuth; Yuriy Mokrousov; Stefan Blügel; S. Auffret; Olivier Boulle; Gilles Gaudin; Pietro Gambardella

Recent demonstrations of magnetization switching induced by in-plane current injection in heavy metal/ferromagnetic heterostructures have drawn increasing attention to spin torques based on orbital-to-spin momentum transfer. The symmetry, magnitude and origin of spin-orbit torques (SOTs), however, remain a matter of debate. Here we report on the three-dimensional vector measurement of SOTs in AlOx/Co/Pt and MgO/CoFeB/Ta trilayers using harmonic analysis of the anomalous and planar Hall effects. We provide a general scheme to measure the amplitude and direction of SOTs as a function of the magnetization direction. Based on space and time inversion symmetry arguments, we demonstrate that heavy metal/ferromagnetic layers allow for two different SOTs having odd and even behaviour with respect to magnetization reversal. Such torques include strongly anisotropic field-like and spin transfer-like components, which depend on the type of heavy metal layer and annealing treatment. These results call for SOT models that go beyond the spin Hall and Rashba effects investigated thus far.


Science | 2016

Electrical switching of an antiferromagnet

P. Wadley; Bryn Howells; J. Železný; C. Andrews; V. Hills; R. P. Campion; V. Novák; K. Olejník; Francesco Maccherozzi; S. S. Dhesi; S. Martin; T. Wagner; J. Wunderlich; Frank Freimuth; Yuriy Mokrousov; Jan Kuneš; J.S. Chauhan; M.J. Grzybowski; A. W. Rushforth; K. W. Edmonds; B. L. Gallagher; T. Jungwirth

Manipulating a stubborn magnet Spintronics is an alternative to conventional electronics, based on using the electrons spin rather than its charge. Spintronic devices, such as magnetic memory, have traditionally used ferromagnetic materials to encode the 1s and 0s of the binary code. A weakness of this approach—that strong magnetic fields can erase the encoded information—could be avoided by using antiferromagnets instead of ferromagnets. But manipulating the magnetic ordering of antiferromagnets is tricky. Now, Wadley et al. have found a way (see the Perspective by Marrows). Running currents along specific directions in the thin films of the antiferromagnetic compound CuMnAs reoriented the magnetic domains in the material. Science, this issue p. 587; see also p. 558 Transport and optical measurements are used to demonstrate the switching of domains in the antiferromagnetic compound CuMnAs. [Also see Perspective by Marrows] Antiferromagnets are hard to control by external magnetic fields because of the alternating directions of magnetic moments on individual atoms and the resulting zero net magnetization. However, relativistic quantum mechanics allows for generating current-induced internal fields whose sign alternates with the periodicity of the antiferromagnetic lattice. Using these fields, which couple strongly to the antiferromagnetic order, we demonstrate room-temperature electrical switching between stable configurations in antiferromagnetic CuMnAs thin-film devices by applied current with magnitudes of order 106 ampere per square centimeter. Electrical writing is combined in our solid-state memory with electrical readout and the stored magnetic state is insensitive to and produces no external magnetic field perturbations, which illustrates the unique merits of antiferromagnets for spintronics.


Physical Review Letters | 2012

Electrically tunable quantum anomalous Hall effect in graphene decorated by 5d transition-metal adatoms.

Hongbin Zhang; Cesar Lazo; Stefan Blügel; S. Heinze; Yuriy Mokrousov

The combination of the unique properties of graphene with spin polarization and magnetism for the design of new spintronic concepts and devices has been hampered by the small Coulomb interaction and the tiny spin-orbit coupling of carbon in pristine graphene. Such device concepts would take advantage of the control of the spin degree of freedom utilizing the widely available electric fields in electronics or of topological transport mechanisms such as the conjectured quantum anomalous Hall effect. Here we show, using first-principles methods, that 5d transition-metal (TM) adatoms deposited on graphene display remarkable magnetic properties. All considered TM adatoms possess significant spin moments with colossal magnetocrystalline anisotropy energies as large as 50 meV per TM atom. We reveal that the magneto-electric response of deposited TM atoms is extremely strong and in some cases offers even the possibility to switch the spontaneous magnetization direction by a moderate external electric field. We predict that an electrically tunable quantum anomalous Hall effect can be observed in this type of hybrid materials.


Nature Nanotechnology | 2013

Terahertz spin current pulses controlled by magnetic heterostructures

Tobias Kampfrath; Marco Battiato; Pablo Maldonado; Gerrit Eilers; Jan Nötzold; Sebastian Mährlein; Vladyslav Zbarsky; Frank Freimuth; Yuriy Mokrousov; Stefan Blügel; Martin Wolf; I. Radu; Peter M. Oppeneer; Markus Münzenberg

1. Department of Physical Chemistry, Fritz Haber Institute, Berlin, Germany. 2. Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden. 3. I. Physikalisches Institut, Georg-August-Universität Göttingen, Göttingen, Germany. 4. Helmholtz-Zentrum Berlin fϋr Materialien und Energie, Berlin, Germany. 5. Peter Grünberg Institute and Institute for Advanced Simulation, Forschungszentrum Jülich and JARA, Jülich, Germany.In spin-based electronics, information is encoded by the spin state of electron bunches. Processing this information requires the controlled transport of spin angular momentum through a solid, preferably at frequencies reaching the so far unexplored terahertz regime. Here, we demonstrate, by experiment and theory, that the temporal shape of femtosecond spin current bursts can be manipulated by using specifically designed magnetic heterostructures. A laser pulse is used to drive spins from a ferromagnetic iron thin film into a non-magnetic cap layer that has either low (ruthenium) or high (gold) electron mobility. The resulting transient spin current is detected by means of an ultrafast, contactless amperemeter based on the inverse spin Hall effect, which converts the spin flow into a terahertz electromagnetic pulse. We find that the ruthenium cap layer yields a considerably longer spin current pulse because electrons are injected into ruthenium d states, which have a much lower mobility than gold sp states. Thus, spin current pulses and the resulting terahertz transients can be shaped by tailoring magnetic heterostructures, which opens the door to engineering high-speed spintronic devices and, potentially, broadband terahertz emitters.


Nature Photonics | 2016

Efficient metallic spintronic emitters of ultrabroadband terahertz radiation

Tom Seifert; S. Jaiswal; Ulrike Martens; J. Hannegan; Lukas Braun; Pablo Maldonado; Frank Freimuth; Alexander Kronenberg; J. Henrizi; I. Radu; E. Beaurepaire; Yuriy Mokrousov; Peter M. Oppeneer; Martin Jourdan; G. Jakob; Dmitry Turchinovich; L. M. Hayden; Martin Wolf; Markus Münzenberg; Mathias Kläui; Tobias Kampfrath

Ultrashort pulses covering the 1–30 THz range are generated from a W/CoFeB/Pt trilayer and originate from photoinduced spin currents, the inverse spin Hall effect and a broadband Fabry–Perot resonance. The resultant peak fields are several 100 kV cm–1.


Physical Review Letters | 2012

Information Transfer by Vector Spin Chirality in Finite Magnetic Chains

Matthias Menzel; Yuriy Mokrousov; Robert Wieser; Jessica E. Bickel; E. Y. Vedmedenko; Stefan Blügel; S. Heinze; Kirsten Bergmann; A. Kubetzka; R. Wiesendanger

Vector spin chirality is one of the fundamental characteristics of complex magnets. For a one-dimensional spin-spiral state it can be interpreted as the handedness, or rotational sense of the spiral. Here, using spin-polarized scanning tunneling microscopy, we demonstrate the occurrence of an atomic-scale spin spiral in finite individual bi-atomic Fe chains on the (5×1)-Ir(001) surface. We show that the broken inversion symmetry at the surface promotes one direction of the vector spin chirality, leading to a unique rotational sense of the spiral in all chains. Correspondingly, changes in the spin direction of one chain end can be probed tens of nanometers away, suggesting a new way of transmitting information about the state of magnetic objects on the nanoscale.


Journal of Physics: Condensed Matter | 2013

Anisotropy of spin relaxation and transverse transport in metals

Yuriy Mokrousov; Hongbin Zhang; Frank Freimuth; Bernd Zimmermann; Nguyen H. Long; Jürgen Weischenberg; Ivo Souza; Phivos Mavropoulos; Stefan Blügel

Using first-principles methods we explore the anisotropy of the spin relaxation and transverse transport properties in bulk metals with respect to the real-space direction of the spin-quantization axis in paramagnets or of the spontaneous magnetization in ferromagnets. Owing to the presence of the spin-orbit coupling the orbital and spin character of the Bloch states depends sensitively on the orientation of the spins relative to the crystal axes. This leads to drastic changes in quantities which rely on interband mixing induced by the spin-orbit interaction. The anisotropy is particularly striking for quantities which exhibit spiky and irregular distributions in the Brillouin zone, such as the spin-mixing parameter or the Berry curvature of the electronic states. We demonstrate this for three cases: (i) the Elliott-Yafet spin-relaxation mechanism in paramagnets with structural inversion symmetry; (ii) the intrinsic anomalous Hall effect in ferromagnets; and (iii) the spin Hall effect in paramagnets. We discuss the consequences of the pronounced anisotropic behavior displayed by these properties for spin-polarized transport applications.


Journal of Physics: Condensed Matter | 2014

Berry phase theory of Dzyaloshinskii-Moriya interaction and spin-orbit torques.

Frank Freimuth; Stefan Blügel; Yuriy Mokrousov

Recent experiments on current-induced domain-wall motion in chiral domain walls reveal important contributions both from spin-orbit torques (SOTs) and from the Dzyaloshinskii-Moriya interaction (DMI). We derive a Berry phase expression for the DMI and show that within this Berry phase theory DMI and SOTs are intimately related, in a way formally analogous to the relation between orbital magnetization (OM) and anomalous Hall effect (AHE). We introduce the concept of the twist torque moment, which probes the internal twist of wavepackets in chiral magnets in a similar way as the orbital moment probes the wavepackets internal self-rotation. We propose to interpret the Berry phase theory of DMI as a theory of spiralization in analogy to the modern theory of OM. We show that the twist torque moment and the spiralization together give rise to a Berry phase governing the response of the SOT to thermal gradients, in analogy to the intrinsic anomalous Nernst effect. The Berry phase theory of DMI is computationally very efficient because it only needs the electronic structure of the collinear magnetic system as input. As an application of the formalism we compute the DMI in Co/Pt(111), O/Co/Pt(111) and Al/Co/Pt(111) magnetic bi- and trilayers and show that the DMI is highly anisotropic in these systems.


Physical Review Letters | 2010

Spin-orbit strength driven crossover between intrinsic and extrinsic mechanisms of the anomalous hall effect in the epitaxial L1{0}-ordered ferromagnets FePd and FePt.

Seemann Km; Yuriy Mokrousov; A. Aziz; Miguel J; F. Kronast; W. Kuch; M. G. Blamire; A. T. Hindmarch; B. J. Hickey; Ivo Souza; C. H. Marrows

We determine the composition of intrinsic as well as extrinsic contributions to the anomalous Hall effect (AHE) in the isoelectronic L1_{0} FePd and FePt alloys. We show that the AHE signal in our 30 nm thick epitaxially deposited films of FePd is mainly due to an extrinsic side jump, while in the epitaxial FePt films of the same thickness and degree of order the intrinsic contribution is dominating over the extrinsic mechanisms of the AHE. We relate this crossover to the difference in spin-orbit strength of Pt and Pd atoms and suggest that this phenomenon can be used for tuning the origins of the AHE in complex alloys.


Physical Review B | 2015

All-electrical manipulation of magnetization dynamics in a ferromagnet by antiferromagnets with anisotropic spin Hall effects

Wei Zhang; Matthias B. Jungfleisch; Frank Freimuth; Wanjun Jiang; Joseph Sklenar; J. Pearson; J. B. Ketterson; Yuriy Mokrousov; A. Hoffmann

We investigate spin-orbit torques of metallic CuAu-I-type antiferromagnets using spin-torque ferromagnetic resonance tuned by a dc-bias current. The observed spin torques predominantly arise from diffusive transport of spin current generated by the spin Hall effect. We find a growth-orientation dependence of the spin torques by studying epitaxial samples, which may be correlated to the anisotropy of the spin Hall effect. The observed anisotropy is consistent with first-principles calculations on the intrinsic spin Hall effect. Our work suggests large tunable spin-orbit effects in magnetically-ordered materials.

Collaboration


Dive into the Yuriy Mokrousov's collaboration.

Top Co-Authors

Avatar

Stefan Blügel

Forschungszentrum Jülich

View shared research outputs
Top Co-Authors

Avatar

Frank Freimuth

Forschungszentrum Jülich

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hongbin Zhang

Technische Universität Darmstadt

View shared research outputs
Top Co-Authors

Avatar

Nguyen H. Long

Forschungszentrum Jülich

View shared research outputs
Top Co-Authors

Avatar

Chengwang Niu

Forschungszentrum Jülich

View shared research outputs
Top Co-Authors

Avatar

Daniel Wortmann

Forschungszentrum Jülich

View shared research outputs
Researchain Logo
Decentralizing Knowledge