Yurong Du
Pennsylvania State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yurong Du.
Nature Immunology | 2009
Jacqueline G. Perrigoue; Steven A. Saenz; Mark C Siracusa; Eric J. Allenspach; Betsy C. Taylor; Paul Giacomin; Meera G. Nair; Yurong Du; Colby Zaph; Nico van Rooijen; Michael R. Comeau; Edward J. Pearce; Terri M. Laufer; David Artis
Dendritic cells can prime naive CD4+ T cells; however, here we demonstrate that dendritic cell–mediated priming was insufficient for the development of T helper type 2 cell–dependent immunity. We identify basophils as a dominant cell population that coexpressed major histocompatibility complex class II and interleukin 4 message after helminth infection. Basophilia was promoted by thymic stromal lymphopoietin, and depletion of basophils impaired immunity to helminth infection. Basophils promoted antigen-specific CD4+ T cell proliferation and interleukin 4 production in vitro, and transfer of basophils augmented the population expansion of helminth-responsive CD4+ T cells in vivo. Collectively, our studies suggest that major histocompatibility complex class II–dependent interactions between basophils and CD4+ T cells promote T helper type 2 cytokine responses and immunity to helminth infection.
Nature | 2007
Colby Zaph; Amy E. Troy; Betsy C. Taylor; Lisa D. Berman-Booty; Katherine J. Guild; Yurong Du; Evan A. Yost; Achim D. Gruber; Michael J. May; Florian R. Greten; Lars Eckmann; Michael Karin; David Artis
Intestinal epithelial cells (IECs) provide a primary physical barrier against commensal and pathogenic microorganisms in the gastrointestinal (GI) tract, but the influence of IECs on the development and regulation of immunity to infection is unknown. Here we show that IEC-intrinsic IκB kinase (IKK)-β-dependent gene expression is a critical regulator of responses of dendritic cells and CD4+ T cells in the GI tract. Mice with an IEC-specific deletion of IKK-β show a reduced expression of the epithelial-cell-restricted cytokine thymic stromal lymphopoietin in the intestine and, after infection with the gut-dwelling parasite Trichuris, fail to develop a pathogen-specific CD4+ T helper type 2 (TH2) response and are unable to eradicate infection. Further, these animals show exacerbated production of dendritic-cell-derived interleukin-12/23p40 and tumour necrosis factor-α, increased levels of CD4+ T-cell-derived interferon-γ and interleukin-17, and develop severe intestinal inflammation. Blockade of proinflammatory cytokines during Trichuris infection ablates the requirement for IKK-β in IECs to promote CD4+ TH2 cell-dependent immunity, identifying an essential function for IECs in tissue-specific conditioning of dendritic cells and limiting type 1 cytokine production in the GI tract. These results indicate that the balance of IKK-β-dependent gene expression in the intestinal epithelium is crucial in intestinal immune homeostasis by promoting mucosal immunity and limiting chronic inflammation.
Journal of Experimental Medicine | 2009
Betsy C. Taylor; Colby Zaph; Amy E. Troy; Yurong Du; Katherine J. Guild; Michael R. Comeau; David Artis
Intestinal epithelial cells (IECs) produce thymic stromal lymphopoietin (TSLP); however, the in vivo influence of TSLP–TSLP receptor (TSLPR) interactions on immunity and inflammation in the intestine remains unclear. We show that TSLP–TSLPR interactions are critical for immunity to the intestinal pathogen Trichuris. Monoclonal antibody–mediated neutralization of TSLP or deletion of the TSLPR in normally resistant mice resulted in defective expression of Th2 cytokines and persistent infection. Susceptibility was accompanied by elevated expression of interleukin (IL) 12/23p40, interferon (IFN) γ, and IL-17A, and development of severe intestinal inflammation. Critically, neutralization of IFN-γ in Trichuris-infected TSLPR−/− mice restored Th2 cytokine responses and resulted in worm expulsion, providing the first demonstration of TSLPR-independent pathways for Th2 cytokine production. Additionally, TSLPR−/− mice displayed elevated production of IL-12/23p40 and IFN-γ, and developed heightened intestinal inflammation upon exposure to dextran sodium sulfate, demonstrating a previously unrecognized immunoregulatory role for TSLP in a mouse model of inflammatory bowel disease.
Mucosal Immunology | 2010
David A. Hill; Christian Hoffmann; Michael C. Abt; Yurong Du; Dmytro Kobuley; Thomas J. Kirn; Frederic D. Bushman; David Artis
Despite widespread use of antibiotics, few studies have measured their effects on the burden or diversity of bacteria in the mammalian intestine. We developed an oral antibiotic treatment protocol and characterized its effects on murine intestinal bacterial communities and immune cell homeostasis. Antibiotic administration resulted in a 10-fold reduction in the amount of intestinal bacteria present and sequencing of 16S rDNA segments revealed significant temporal and spatial effects on luminal and mucosal-associated communities including reductions in luminal Firmicutes and mucosal-associated Lactobacillus species, and persistence of bacteria belonging to the Bacteroidetes and Proteobacteria phyla. Concurrently, antibiotic administration resulted in reduced RELMβ production, and reduced production of interferon-γ and interleukin-17A by mucosal CD4+ T lymphocytes. This comprehensive temporal and spatial metagenomic analyses will provide a resource and framework to test the influence of bacterial communities in murine models of human disease.
Journal of Experimental Medicine | 2008
Colby Zaph; Yurong Du; Steven A. Saenz; Meera G. Nair; Jacqueline G. Perrigoue; Betsy C. Taylor; Amy E. Troy; Dmytro Kobuley; Robert A. Kastelein; Daniel J. Cua; Yimin Yu; David Artis
Alterations in the composition of intestinal commensal bacteria are associated with enhanced susceptibility to multiple inflammatory diseases, including those conditions associated with interleukin (IL)-17–producing CD4+ T helper (Th17) cells. However, the relationship between commensal bacteria and the expression of proinflammatory cytokines remains unclear. Using germ-free mice, we show that the frequency of Th17 cells in the large intestine is significantly elevated in the absence of commensal bacteria. Commensal-dependent expression of the IL-17 family member IL-25 (IL-17E) by intestinal epithelial cells limits the expansion of Th17 cells in the intestine by inhibiting expression of macrophage-derived IL-23. We propose that acquisition of, or alterations in, commensal bacteria influences intestinal immune homeostasis via direct regulation of the IL-25–IL-23–IL-17 axis.
Journal of Experimental Medicine | 2009
Meera G. Nair; Yurong Du; Jacqueline G. Perrigoue; Colby Zaph; Justin J. Taylor; Michael Goldschmidt; Gary P. Swain; George D. Yancopoulos; David M. Valenzuela; Andrew J. Murphy; Margaret Karow; Sean Stevens; Edward J. Pearce; David Artis
Differentiation and recruitment of alternatively activated macrophages (AAMacs) are hallmarks of several inflammatory conditions associated with infection, allergy, diabetes, and cancer. AAMacs are defined by the expression of Arginase 1, chitinase-like molecules, and resistin-like molecule (RELM) α/FIZZ1; however, the influence of these molecules on the development, progression, or resolution of inflammatory diseases is unknown. We describe the generation of RELM-α–deficient (Retnla−/−) mice and use a model of T helper type 2 (Th2) cytokine-dependent lung inflammation to identify an immunoregulatory role for RELM-α. After challenge with Schistosoma mansoni (Sm) eggs, Retnla−/− mice developed exacerbated lung inflammation compared with their wild-type counterparts, characterized by excessive pulmonary vascularization, increased size of egg-induced granulomas, and elevated fibrosis. Associated with increased disease severity, Sm egg–challenged Retnla−/− mice exhibited elevated expression of pathogen-specific CD4+ T cell–derived Th2 cytokines. Consistent with immunoregulatory properties, recombinant RELM-α could bind to macrophages and effector CD4+ Th2 cells and inhibited Th2 cytokine production in a Brutons tyrosine kinase–dependent manner. Additionally, Retnla−/− AAMacs promoted exaggerated antigen-specific Th2 cell differentiation. Collectively, these data identify a previously unrecognized role for AAMac-derived RELM-α in limiting the pathogenesis of Th2 cytokine-mediated pulmonary inflammation, in part through the regulation of CD4+ T cell responses.
Journal of Immunology | 2008
Meera G. Nair; Katherine J. Guild; Yurong Du; Colby Zaph; George D. Yancopoulos; David M. Valenzuela; Andrew J. Murphy; Sean Stevens; Margaret Karow; David Artis
The secreted goblet cell-derived protein resistin-like molecule β (RELMβ) has been implicated in divergent functions, including a direct effector function against parasitic helminths and a pathogenic function in promoting inflammation in models of colitis and ileitis. However, whether RELMβ influences CD4+ T cell responses in the intestine is unknown. Using a natural model of intestinal inflammation induced by chronic infection with gastrointestinal helminth Trichuris muris, we identify dual functions for RELMβ in augmenting CD4+ Th1 cell responses and promoting infection-induced intestinal inflammation. Following exposure to low-dose Trichuris, wild-type C57BL/6 mice exhibit persistent infection associated with robust IFN-γ production and intestinal inflammation. In contrast, infected RELMβ−/− mice exhibited a significantly reduced expression of parasite-specific CD4+ T cell-derived IFN-γ and TNF-α and failed to develop Trichuris-induced intestinal inflammation. In in vitro T cell differentiation assays, recombinant RELMβ activated macrophages to express MHC class II and secrete IL-12/23p40 and enhanced their ability to mediate Ag-specific IFN-γ expression in CD4+ T cells. Taken together, these data suggest that goblet cell-macrophage cross-talk, mediated in part by RELMβ, can promote adaptive CD4+ T cell responses and chronic inflammation following intestinal helminth infection.
Journal of Immunology | 2009
Amy E. Troy; Colby Zaph; Yurong Du; Betsy C. Taylor; Katherine J. Guild; Christopher A. Hunter; Christiaan J. M. Saris; David Artis
IL-27 limits CD4+ TH17 cell development in vitro and during inflammatory responses in the CNS. However, whether IL-27-IL-27R interactions regulate the homeostasis or function of CD4+ T cell populations in the intestine is unknown. To test this, we examined CD4+ T cell populations in the intestine of wild-type and IL-27R−/− mice. Naive IL-27R−/− mice exhibited a selective decrease in the frequency of IFN-γ producing CD4+ TH1 cells and an increase in the frequency of TH17 cells in gut-associated lymphoid tissues. Associated with elevated expression of IL-17A, IL-27R−/− mice exhibited earlier onset and significantly increased severity of clinical disease compared with wild-type controls in a murine model of intestinal inflammation. Rag−/−/IL-27R−/− mice were also more susceptible than Rag−/− mice to development of dextran sodium sulfate-induced intestinal inflammation, indicating an additional role for IL-27-IL-27R in the regulation of innate immune cell function. Consistent with this, IL-27 inhibited proinflammatory cytokine production by activated neutrophils. Collectively, these data identify a role for IL-27-IL-27R interaction in controlling the homeostasis of the intestinal T cell pool and in limiting intestinal inflammation through regulation of innate and adaptive immune cell function.
Journal of Immunology | 2009
Jacqueline G. Perrigoue; Colby Zaph; Katherine J. Guild; Yurong Du; David Artis
IL-31 is a recently identified cytokine made predominantly by CD4+ Th2 cells and its receptor, IL-31R, is expressed by a number of cell types including monocytes, epithelial cells, and T cells. Originally identified as a potential mediator of inflammation in the skin, we recently reported a novel function for endogenous IL-31R interactions in limiting type 2 inflammation in the lung. However, whether IL-31-IL-31R interactions regulate immunity or inflammation at other mucosal sites, such as the gut, is unknown. In this study, we report a regulatory role for IL-31-IL-31R interactions in the intestine following infection with the gastrointestinal helminth Trichuris muris, immunity to which is critically dependent on CD4+ Th2 cells that produce IL-4 and IL-13. IL-31Rα was constitutively expressed in the colon and exposure to Trichuris induced the expression of IL-31 in CD4+ T cells. In response to Trichuris infection, IL-31Rα−/− mice exhibited increased Th2 cytokine responses in the mesenteric lymph nodes and elevated serum IgE and IgG1 levels compared with wild type mice. IL-31Rα−/− mice also displayed enhanced goblet cell hyperplasia and a marked increase in secretion of goblet cell-derived resistin-like molecule β into the intestinal lumen. Consistent with their exacerbated type 2 inflammatory responses, IL-31Rα−/− mice exhibited accelerated expulsion of Trichuris with significantly decreased worm burdens compared with their wild type counterparts early following infection. Collectively, these data provide the first evidence of a function for IL-31-IL-31R interactions in limiting the magnitude of type 2 inflammatory responses within the intestine.
Journal of Immunology | 2013
Lisa C. Osborne; Karen L. Joyce; Theresa Alenghat; Gregory F. Sonnenberg; Paul Giacomin; Yurong Du; Kirk S. Bergstrom; Bruce A. Vallance; Meera G. Nair
Resistin-like molecule (RELM)α belongs to a family of secreted mammalian proteins that have putative immunomodulatory functions. Recent studies have identified a pathogenic role for RELMα in chemically induced colitis through effects on innate cell populations. However, whether RELMα regulates intestinal adaptive immunity to enteric pathogens is unknown. In this study, we employed Citrobacter rodentium as a physiologic model of pathogenic Escherichia coli–induced diarrheal disease, colitis, and Th17 cell responses. In response to Citrobacter, RELMα expression was induced in intestinal epithelial cells, infiltrating macrophages, and eosinophils of the infected colons. Citrobacter-infected RELMα−/− mice exhibited reduced infection-induced intestinal inflammation, characterized by decreased leukocyte recruitment to the colons and reduced immune cell activation compared with wild-type (WT) mice. Interestingly, Citrobacter colonization and clearance were unaffected in RELMα−/− mice, suggesting that the immune stimulatory effects of RELMα following Citrobacter infection were pathologic rather than host-protective. Furthermore, infected RELMα−/− mice exhibited decreased CD4+ T cell expression of the proinflammatory cytokine IL-17A. To directly test whether RELMα promoted Citrobacter-induced intestinal inflammation via IL-17A, infected WT and IL-17A−/− mice were treated with rRELMα. RELMα treatment of Citrobacter-infected WT mice exacerbated intestinal inflammation and IL-17A expression whereas IL-17A−/− mice were protected from RELMα-induced intestinal inflammation. Finally, infected RELMα−/− mice exhibited reduced levels of serum IL-23p19 compared with WT mice, and RELMα−/− peritoneal macrophages showed deficient IL-23p19 induction. Taken together, these data identify a proinflammatory role for RELMα in bacterial-induced colitis and suggest that the IL-23/Th17 axis is a critical mediator of RELMα-induced inflammation.