Yurong Liu
Yangzhou University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yurong Liu.
Neural Networks | 2006
Yurong Liu; Zidong Wang; Xiaohui Liu
This paper is concerned with analysis problem for the global exponential stability of a class of recurrent neural networks (RNNs) with mixed discrete and distributed delays. We first prove the existence and uniqueness of the equilibrium point under mild conditions, assuming neither differentiability nor strict monotonicity for the activation function. Then, by employing a new Lyapunov-Krasovskii functional, a linear matrix inequality (LMI) approach is developed to establish sufficient conditions for the RNNs to be globally exponentially stable. Therefore, the global exponential stability of the delayed RNNs can be easily checked by utilizing the numerically efficient Matlab LMI toolbox, and no tuning of parameters is required. A simulation example is exploited to show the usefulness of the derived LMI-based stability conditions.
IEEE Transactions on Neural Networks | 2006
Zidong Wang; Yurong Liu; Maozhen Li; Xiaohui Liu
In this letter, the global asymptotic stability analysis problem is considered for a class of stochastic Cohen-Grossberg neural networks with mixed time delays, which consist of both the discrete and distributed time delays. Based on an Lyapunov-Krasovskii functional and the stochastic stability analysis theory, a linear matrix inequality (LMI) approach is developed to derive several sufficient conditions guaranteeing the global asymptotic convergence of the equilibrium point in the mean square. It is shown that the addressed stochastic Cohen-Grossberg neural networks with mixed delays are globally asymptotically stable in the mean square if two LMIs are feasible, where the feasibility of LMIs can be readily checked by the Matlab LMI toolbox. It is also pointed out that the main results comprise some existing results as special cases. A numerical example is given to demonstrate the usefulness of the proposed global stability criteria
IEEE Transactions on Neural Networks | 2010
Zidong Wang; Yao Wang; Yurong Liu
In this paper, the problem of stochastic synchronization analysis is investigated for a new array of coupled discrete-time stochastic complex networks with randomly occurred nonlinearities (RONs) and time delays. The discrete-time complex networks under consideration are subject to: (1) stochastic nonlinearities that occur according to the Bernoulli distributed white noise sequences; (2) stochastic disturbances that enter the coupling term, the delayed coupling term as well as the overall network; and (3) time delays that include both the discrete and distributed ones. Note that the newly introduced RONs and the multiple stochastic disturbances can better reflect the dynamical behaviors of coupled complex networks whose information transmission process is affected by a noisy environment (e.g., Internet-based control systems). By constructing a novel Lyapunov-like matrix functional, the idea of delay fractioning is applied to deal with the addressed synchronization analysis problem. By employing a combination of the linear matrix inequality (LMI) techniques, the free-weighting matrix method and stochastic analysis theories, several delay-dependent sufficient conditions are obtained which ensure the asymptotic synchronization in the mean square sense for the discrete-time stochastic complex networks with time delays. The criteria derived are characterized in terms of LMIs whose solution can be solved by utilizing the standard numerical software. A simulation example is presented to show the effectiveness and applicability of the proposed results.
systems man and cybernetics | 2008
Yurong Liu; Zidong Wang; Jinling Liang; Xiaohui Liu
In this paper, a synchronization problem is investigated for an array of coupled complex discrete-time networks with the simultaneous presence of both the discrete and distributed time delays. The complex networks addressed which include neural and social networks as special cases are quite general. Rather than the commonly used Lipschitz-type function, a more general sector-like nonlinear function is employed to describe the nonlinearities existing in the network. The distributed infinite time delays in the discrete-time domain are first defined. By utilizing a novel Lyapunov-Krasovskii functional and the Kronecker product, it is shown that the addressed discrete-time complex network with distributed delays is synchronized if certain linear matrix inequalities (LMIs) are feasible. The state estimation problem is then studied for the same complex network, where the purpose is to design a state estimator to estimate the network states through available output measurements such that, for all admissible discrete and distributed delays, the dynamics of the estimation error is guaranteed to be globally asymptotically stable. Again, an LMI approach is developed for the state estimation problem. Two simulation examples are provided to show the usefulness of the proposed global synchronization and state estimation conditions. It is worth pointing out that our main results are valid even if the nominal subsystems within the network are unstable.
IEEE Transactions on Neural Networks | 2009
Yurong Liu; Zidong Wang; Jinling Liang; Xiaohui Liu
In this paper, we introduce a new class of discrete-time neural networks (DNNs) with Markovian jumping parameters as well as mode-dependent mixed time delays (both discrete and distributed time delays). Specifically, the parameters of the DNNs are subject to the switching from one to another at different times according to a Markov chain, and the mixed time delays consist of both discrete and distributed delays that are dependent on the Markovian jumping mode. We first deal with the stability analysis problem of the addressed neural networks. A special inequality is developed to account for the mixed time delays in the discrete-time setting, and a novel Lyapunov-Krasovskii functional is put forward to reflect the mode-dependent time delays. Sufficient conditions are established in terms of linear matrix inequalities (LMIs) that guarantee the stochastic stability. We then turn to the synchronization problem among an array of identical coupled Markovian jumping neural networks with mixed mode-dependent time delays. By utilizing the Lyapunov stability theory and the Kronecker product, it is shown that the addressed synchronization problem is solvable if several LMIs are feasible. Hence, different from the commonly used matrix norm theories (such as the M-matrix method), a unified LMI approach is developed to solve the stability analysis and synchronization problems of the class of neural networks under investigation, where the LMIs can be easily solved by using the available Matlab LMI toolbox. Two numerical examples are presented to illustrate the usefulness and effectiveness of the main results obtained.
Neural Networks | 2009
Zidong Wang; Yurong Liu; Xiaohui Liu
This paper is concerned with the state estimation problem for a class of Markovian neural networks with discrete and distributed time-delays. The neural networks have a finite number of modes, and the modes may jump from one to another according to a Markov chain. The main purpose is to estimate the neuron states, through available output measurements, such that for all admissible time-delays, the dynamics of the estimation error is globally asymptotically stable in the mean square. An effective linear matrix inequality approach is developed to solve the neuron state estimation problem. Both the existence conditions and the explicit characterization of the desired estimator are derived. Furthermore, it is shown that the traditional stability analysis issue for delayed neural networks with Markovian jumping parameters can be included as a special case of our main results. Finally, numerical examples are given to illustrate the applicability of the proposed design method.
IEEE Transactions on Automatic Control | 2010
Zidong Wang; Yurong Liu; Xiaohui Liu
In this technical note, the globally exponential stabilization problem is investigated for a general class of stochastic systems with both Markovian jumping parameters and mixed time-delays. The mixed mode-dependent time-delays consist of both discrete and distributed delays. We aim to design a memoryless state feedback controller such that the closed-loop system is stochastically exponentially stable in the mean square sense. First, by introducing a new Lyapunov-Krasovskii functional that accounts for the mode-dependent mixed delays, stochastic analysis is conducted in order to derive a criterion for the exponential stabilizability problem. Then, a variation of such a criterion is developed to facilitate the controller design by using the linear matrix inequality (LMI) approach. Finally, it is shown that the desired state feedback controller can be characterized explicitly in terms of the solution to a set of LMIs. Numerical simulation is carried out to demonstrate the effectiveness of the proposed methods.
IEEE Transactions on Neural Networks | 2008
Jinling Liang; Zidong Wang; Yurong Liu; Xiaohui Liu
This paper is concerned with the robust synchronization problem for an array of coupled stochastic discrete-time neural networks with time-varying delay. The individual neural network is subject to parameter uncertainty, stochastic disturbance, and time-varying delay, where the norm-bounded parameter uncertainties exist in both the state and weight matrices, the stochastic disturbance is in the form of a scalar Wiener process, and the time delay enters into the activation function. For the array of coupled neural networks, the constant coupling and delayed coupling are simultaneously considered. We aim to establish easy-to-verify conditions under which the addressed neural networks are synchronized. By using the Kronecker product as an effective tool, a linear matrix inequality (LMI) approach is developed to derive several sufficient criteria ensuring the coupled delayed neural networks to be globally, robustly, exponentially synchronized in the mean square. The LMI-based conditions obtained are dependent not only on the lower bound but also on the upper bound of the time-varying delay, and can be solved efficiently via the Matlab LMI Toolbox. Two numerical examples are given to demonstrate the usefulness of the proposed synchronization scheme.
systems man and cybernetics | 2008
Jinling Liang; Zidong Wang; Yurong Liu; Xiaohui Liu
In this paper, the synchronization control problem is considered for two coupled discrete-time complex networks with time delays. The network under investigation is quite general to reflect the reality, where the state delays are allowed to be time varying with given lower and upper bounds, and the stochastic disturbances are assumed to be Brownian motions that affect not only the network coupling but also the overall networks. By utilizing the Lyapunov functional method combined with linear matrix inequality (LMI) techniques, we obtain several sufficient delay-dependent conditions that ensure the coupled networks to be globally exponentially synchronized in the mean square. A control law is designed to synchronize the addressed coupled complex networks in terms of certain LMIs that can be readily solved using the Matlab LMI toolbox. Two numerical examples are presented to show the validity of our theoretical analysis results.
Neurocomputing | 2017
Weibo Liu; Zidong Wang; Xiaohui Liu; Nianyin Zeng; Yurong Liu; Fuad E. Alsaadi
This work was supported in part the Royal Society of the UK, the National Natural Science Foundation of China under Grants 61329301, 61374010, and 61403319, and the Alexander von Humboldt Foundation of Germany.