Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yury I. Miller is active.

Publication


Featured researches published by Yury I. Miller.


Nature Medicine | 2002

Innate and acquired immunity in atherogenesis.

Christoph J. Binder; Mi-Kyung Chang; Peter X. Shaw; Yury I. Miller; Asheesh Dewan; Joseph L. Witztum

Traditional risk factors like hypercholesterolemia are important for atherogenesis, but it is now apparent that the immune system also plays an important role. Uncovering the mechanisms by which specific components of the immune system impact atherogenesis will not only provide new insights into the pathogenesis of lesion formation, but could also lead to novel therapeutic approaches that involve immune modulation.


Circulation Research | 2011

Oxidation-Specific Epitopes Are Danger-Associated Molecular Patterns Recognized by Pattern Recognition Receptors of Innate Immunity

Yury I. Miller; Soo Ho Choi; Philipp Wiesner; Longhou Fang; Richard Harkewicz; Agnès Boullier; Ayelet Gonen; Cody J. Diehl; Xuchu Que; Erica N. Montano; Peter X. Shaw; Sotirios Tsimikas; Christoph J. Binder; Joseph L. Witztum

Oxidation reactions are vital parts of metabolism and signal transduction. However, they also produce reactive oxygen species, which damage lipids, proteins and DNA, generating “oxidation-specific” epitopes. In this review, we discuss the hypothesis that such common oxidation-specific epitopes are a major target of innate immunity, recognized by a variety of “pattern recognition receptors” (PRRs). By analogy with microbial “pathogen-associated molecular patterns” (PAMPs), we postulate that host-derived, oxidation-specific epitopes can be considered to represent “danger (or damage)-associated molecular patterns” (DAMPs). We also argue that oxidation-specific epitopes present on apoptotic cells and their cellular debris provided the primary evolutionary pressure for the selection of such PRRs. Furthermore, because many PAMPs on microbes share molecular identity and/or mimicry with oxidation-specific epitopes, such PAMPs provide a strong secondary selecting pressure for the same set of oxidation-specific PRRs as well. Because lipid peroxidation is ubiquitous and a major component of the inflammatory state associated with atherosclerosis, the understanding that oxidation-specific epitopes are DAMPs, and thus the target of multiple arcs of innate immunity, provides novel insights into the pathogenesis of atherosclerosis. As examples, we show that both cellular and soluble PRRs, such as CD36, toll-like receptor-4, natural antibodies, and C-reactive protein recognize common oxidation-specific DAMPs, such as oxidized phospholipids and oxidized cholesteryl esters, and mediate a variety of immune responses, from expression of proinflammatory genes to excessive intracellular lipoprotein accumulation to atheroprotective humoral immunity. These insights may lead to improved understanding of inflammation and atherogenesis and suggest new approaches to diagnosis and therapy.


Journal of Biological Chemistry | 2003

Minimally modified LDL binds to CD14, induces macrophage spreading via TLR4/MD-2, and inhibits phagocytosis of apoptotic cells.

Yury I. Miller; Suganya Viriyakosol; Christoph J. Binder; James R. Feramisco; Theo N. Kirkland; Joseph L. Witztum

Minimally modified low density lipoprotein (mmLDL) is a pro-inflammatory and pro-atherogenic lipoprotein that, unlike profoundly oxidized LDL (OxLDL), is not recognized by scavenger receptors and thus does not have enhanced uptake by macrophages. However, here we demonstrate that mmLDL (as well as OxLDL) induces actin polymerization and spreading of macrophages, which results in such pro-atherogenic consequences as inhibition of phagocytosis of apoptotic cells but enhancement of OxLDL uptake. We also demonstrate for the first time that the lipopolysaccharide receptor, CD14, and toll-like receptor-4/MD-2 are involved in these mmLDL effects. Macrophages of the J774 cell line exhibited higher mmLDL binding and F-actin response than its CD14-deficient mutant, LR-9 cells. Similarly, Chinese hamster ovary cells transfected with human CD14 specifically bound mmLDL and responded with higher F-actin compared with control cells. Macrophages from C3H/HeJ mice, which have a point mutation in the Tlr4 gene, responded with lower F-actin to mmLDL and did not spread as well as macrophages from control animals. A significantly higher F-actin response was also observed in Chinese hamster ovary cells transfected with human toll-like receptor-4/MD-2 but not with TLR4 alone or TLR2. Thus, in addition to inhibition of phagocytosis, the recognition of mmLDL by macrophage lipopolysaccharide receptors results in convergence of cellular immune responses to products of microorganisms and to oxidation-specific self-antigens, which could both influence macrophage function and atherogenesis.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2011

Monocyte and Macrophage Dynamics During Atherogenesis

Klaus Ley; Yury I. Miller; Catherine C. Hedrick

Vascular inflammation is associated with and in large part driven by changes in the leukocyte compartment of the vessel wall. Here, we focus on monocyte influx during atherosclerosis, the most common form of vascular inflammation. Although the arterial wall contains a large number of resident macrophages and some resident dendritic cells, atherosclerosis drives a rapid influx of inflammatory monocytes (Ly-6C(+) in mice) and other monocytes (Ly-6C(-) in mice, also known as patrolling monocytes). Once in the vessel wall, Ly-6C(+) monocytes differentiate to a phenotype consistent with inflammatory macrophages and inflammatory dendritic cells. The phenotype of these cells is modulated by lipid uptake, Toll-like receptor ligands, hematopoietic growth factors, cytokines, and chemokines. In addition to newly recruited macrophages, it is likely that resident macrophages also change their phenotype. Monocyte-derived inflammatory macrophages have a short half-life. After undergoing apoptosis, they may be taken up by surrounding macrophages or, if the phagocytic capacity is overwhelmed, can undergo secondary necrosis, a key event in forming the necrotic core of atherosclerotic lesions. In this review, we discuss these and other processes associated with monocytic cell dynamics in the vascular wall and their role in the initiation and progression of atherosclerosis.


Journal of Clinical Investigation | 2009

Oxidation-specific epitopes are dominant targets of innate natural antibodies in mice and humans

Meng-Yun Chou; Linda Fogelstrand; Lotte F. Hansen; Douglas Woelkers; Peter X. Shaw; Jeom-Il Choi; Thomas Perkmann; Fredrik Bäckhed; Yury I. Miller; Sohvi Hörkkö; Maripat Corr; Joseph L. Witztum; Christoph J. Binder

Atherosclerosis is a chronic inflammatory disease characterized by the accumulation of oxidized lipoproteins and apoptotic cells. Adaptive immune responses to various oxidation-specific epitopes play an important role in atherogenesis. However, accumulating evidence suggests that these epitopes are also recognized by innate receptors, such as scavenger receptors on macrophages, and plasma proteins, such as C-reactive protein (CRP). Here, we provide multiple lines of evidence that oxidation-specific epitopes constitute a dominant, previously unrecognized target of natural Abs (NAbs) in both mice and humans. Using reconstituted mice expressing solely IgM NAbs, we have shown that approximately 30% of all NAbs bound to model oxidation-specific epitopes, as well as to atherosclerotic lesions and apoptotic cells. Because oxidative processes are ubiquitous, we hypothesized that these epitopes exert selective pressure to expand NAbs, which in turn play an important role in mediating homeostatic functions consequent to inflammation and cell death, as demonstrated by their ability to facilitate apoptotic cell clearance. These findings provide novel insights into the functions of NAbs in mediating host homeostasis and into their roles in health and diseases, such as chronic inflammatory diseases and atherosclerosis.


Journal of Experimental Medicine | 2004

Apoptotic cells with oxidation-specific epitopes are immunogenic and proinflammatory

Mi-Kyung Chang; Christoph J. Binder; Yury I. Miller; Ganesamoorthy Subbanagounder; Gregg J. Silverman; Judith A. Berliner; Joseph L. Witztum

Oxidation of low density lipoprotein (LDL) generates a variety of oxidatively modified lipids and lipid-protein adducts that are immunogenic and proinflammatory, which in turn contribute to atherogenesis. Cells undergoing apoptosis also display oxidized moieties on their surface membranes, as determined by binding of oxidation-specific monoclonal antibodies. In the present paper, we demonstrated by mass spectrometry that in comparison with viable cells, membranes of cells undergoing apoptosis contain increased levels of biologically active oxidized phospholipids (OxPLs). Indeed, immunization of mice with syngeneic apoptotic cells induced high autoantibody titers to various oxidation-specific epitopes of oxidized LDL, including OxPLs containing phosphorylcholine, whereas immunization with viable thymocytes, primary necrotic thymocytes, or phosphate-buffered saline did not. Reciprocally, these antisera specifically bound to apoptotic cells through the recognition of oxidation-specific epitopes. Moreover, splenocyte cultures from mice immunized with apoptotic cells spontaneously released significant levels of T helper cell (Th) 1 and Th2 cytokines, whereas splenocytes from controls yielded only low levels. Finally, we demonstrated that the OxPLs of apoptotic cells activated endothelial cells to induce monocyte adhesion, a proinflammatory response that was abrogated by an antibody specific to oxidized phosphatidylcholine. These results suggest that apoptotic cell death generates oxidatively modified moieties, which can induce autoimmune responses and a local inflammatory response by recruiting monocytes via monocyte–endothelial cell interaction.


Circulation Research | 2009

Macrophages Generate Reactive Oxygen Species in Response to Minimally Oxidized Low-Density Lipoprotein. Toll-Like Receptor 4– and Spleen Tyrosine Kinase–Dependent Activation of NADPH Oxidase 2

Yun Soo Bae; Jee Hyun Lee; Soo Ho Choi; Sunah Kim; Felicidad Almazan; Joseph L. Witztum; Yury I. Miller

Oxidative modification of low-density lipoprotein (LDL) plays a causative role in the development of atherosclerosis. In this study, we demonstrate that minimally oxidized LDL (mmLDL) stimulates intracellular reactive oxygen species (ROS) generation in macrophages through NADPH oxidase 2 (gp91phox/Nox2), which, in turn, induces production of RANTES and migration of smooth muscle cells. Peritoneal macrophages from gp91phox/Nox2−/− mice or J774 macrophages in which Nox2 was knocked down by small interfering RNA failed to generate ROS in response to mmLDL. Because mmLDL-induced cytoskeletal changes were dependent on Toll-like receptor (TLR)4, we analyzed ROS generation in peritoneal macrophages from wild-type, TLR4−/−, or MyD88−/− mice and found that mmLDL-mediated ROS was generated in a TLR4-dependent, but MyD88-independent, manner. Furthermore, we found that ROS generation required the recruitment and activation of spleen tyrosine kinase (Syk) and that mmLDL also induced phospholipase PLC&ggr;1 phosphorylation and protein kinase C membrane translocation. Importantly, the phospholipase C&ggr;1 phosphorylation was reduced in J774 cells expressing Syk-specific short hairpin RNA. Nox2 modulated mmLDL activation of macrophages by regulating the expression of proinflammatory cytokines interleukin-1&bgr;, interleukin-6, and RANTES. We showed that purified RANTES was able to stimulate migration of mouse aortic smooth muscle cells and addition of neutralizing antibody against RANTES abolished the migration of mouse aortic smooth muscle cells stimulated by mmLDL-stimulated macrophages. These results suggest that mmLDL induces generation of ROS through sequential activation of TLR4, Syk, phospholipase C&ggr;1, protein kinase C, and gp91phox/Nox2 and thereby stimulates expression of proinflammatory cytokines. These data help explain mechanisms by which endogenous ligands, such as mmLDL, can induce TLR4-dependent, proatherogenic activation of macrophages.Oxidative modification of low-density lipoprotein (LDL) plays a causative role in the development of atherosclerosis. In this study, we demonstrate that minimally oxidized LDL (mmLDL) stimulates intracellular reactive oxygen species (ROS) generation in macrophages through NADPH oxidase 2 (gp91phox/Nox2), which in turn induces production of RANTES and migration of smooth muscle cells. Peritoneal macrophages from gp91phox/Nox2−/− mice or J774 macrophages in which Nox2 was knocked down by siRNA failed to generate ROS in response to mmLDL. Because mmLDL-induced cytoskeletal changes were dependent on TLR4, we analyzed ROS generation in peritoneal macrophages from wild type, TLR4−/−, or MyD88−/− mice and found that mmLDL-mediated ROS was generated in a TLR4-dependent, but MyD88-independent manner. Furthermore, we found that ROS generation required the recruitment and activation of spleen tyrosine kinase (Syk) and that mmLDL also induced PLCγ1 phosphorylation and PKC membrane translocation. Importantly, the PLCγ1 phosphorylation was reduced in J774 cells expressing Syk-specific shRNA. Nox2 modulated mmLDL activation of macrophages by regulating the expression of proinflammatory cytokines IL-1β, IL-6 and RANTES. We showed that purified RANTES was able to stimulate migration of mouse aortic smooth muscle cells (MASMC) and addition of neutralizing antibody against RANTES abolished the migration of MASMC stimulated by mmLDL-stimulated macrophages. These results suggest that mmLDL induces generation of ROS through sequential activation of TLR4, Syk, PLCγ1, PKC, and gp91phox/Nox2 and thereby stimulates expression of proinflammatory cytokines. These data help explain mechanisms by which endogenous ligands, such as mmLDL, can induce TLR4-dependent, proatherogenic activation of macrophages.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2005

Toll-Like Receptor 4–Dependent and –Independent Cytokine Secretion Induced by Minimally Oxidized Low-Density Lipoprotein in Macrophages

Yury I. Miller; Suganya Viriyakosol; Dorothy Sears Worrall; Agnès Boullier; Susan Butler; Joseph L. Witztum

Objective—Innate immune responses to oxidized low-density lipoprotein LDL (LDL) regulate the development of atherosclerosis. We demonstrated previously that an early form of oxidized LDL, minimally modified LDL (mmLDL), triggers cytoskeletal rearrangements in macrophages via CD14 and Toll-like receptor 4 (TLR4)/MD-2. Because lipopolysaccharide (LPS) activation of TLR4 leads to proinflammatory gene expression, in this study, we asked whether mmLDL also induced proinflammatory signaling. Methods and Results—We studied cytokine secretion and signaling in J774 and primary peritoneal macrophages stimulated with mmLDL, which was prepared by incubating LDL with cells expressing human 15-lipoxygenase. MmLDL stimulated robust phosphoinositide 3-kinase (PI3K) activation, and Akt and extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation, which exceeded that induced by LPS. On the other hand, although mmLDL induced nuclear factor &kgr;B (NF-&kgr;B) p65 translocation to the nucleus, there was no detectable NF-&kgr;B activation. However, mmLDL induced early mRNA and protein expression of the cytokines MIP-2, MCP-1, tumor necrosis factor-α, and interleukin-6. Chemokine MIP-2 but not MCP-1 secretion depended on TLR4/MyD88, ERK1/2, and PI3K signaling. In turn, TLR4 regulated phosphorylation of ERK1/2 but not of Akt, suggesting that mmLDL-induced PI3K activation is TLR4 independent. Conclusions—In macrophages, mmLDL activates TLR4-dependent and -independent signaling pathways, resulting in secretion of proinflammatory cytokines. These results provide new insights into the inflammatory origins of atherosclerosis.


Circulation Research | 2009

Lipoprotein Accumulation in Macrophages via Toll-Like Receptor-4–Dependent Fluid Phase Uptake

Soo-Ho Choi; Richard Harkewicz; Jee Hyun Lee; Agnès Boullier; Felicidad Almazan; Andrew C. Li; Joseph L. Witztum; Yun Soo Bae; Yury I. Miller

Toll-like receptor (TLR)4 recognizes microbial pathogens, such as lipopolysaccharide, and mediates lipopolysaccharide-induced proinflammatory cytokine secretion, as well as microbial uptake by macrophages. In addition to exogenous pathogens, TLR4 recognizes modified self, such as minimally oxidized low-density lipoprotein (mmLDL). Here we report that mmLDL and its active components, cholesteryl ester hydroperoxides, induce TLR4-dependent fluid phase uptake typical of macropinocytosis. We show that mmLDL induced recruitment of spleen tyrosine kinase (Syk) to a TLR4 signaling complex, TLR4 phosphorylation, activation of a Vav1-Ras-Raf-MEK-ERK1/2 signaling cascade, phosphorylation of paxillin, and activation of Rac, Cdc42, and Rho. These mmLDL-induced and TLR4- and Syk-dependent signaling events and cytoskeletal rearrangements lead to enhanced uptake of small molecules, dextran, and, most importantly, both native and oxidized LDL, resulting in intracellular lipid accumulation. An intravenous injection of fluorescently labeled mmLDL in wild-type mice resulted in its rapid accumulation in circulating monocytes, which was significantly attenuated in TLR4-deficient mice. These data describe a novel mechanism leading to enhanced lipoprotein uptake in macrophages that would contribute to foam cell formation and atherosclerosis. These data also suggest that cholesteryl ester hydroperoxides are an endogenous ligand for TLR4. Because TLR4 is highly expressed on the surface of circulating monocytes in patients with chronic inflammatory conditions, and cholesteryl ester hydroperoxides are present in plasma, lipid uptake by monocytes in circulation may contribute to the pathological roles of monocytes in chronic inflammatory diseases.


Circulation Research | 2009

Vascular Lipid Accumulation, Lipoprotein Oxidation, and Macrophage Lipid Uptake in Hypercholesterolemic Zebrafish

Konstantin Stoletov; Longhou Fang; Soo Ho Choi; Lotte F. Hansen; Christopher J. Hall; Jennifer Pattison; Joseph Juliano; Elizabeth R. Miller; Felicidad Almazan; Phil Crosier; Joseph L. Witztum; Richard L. Klemke; Yury I. Miller

Lipid accumulation in arteries induces vascular inflammation and atherosclerosis, the major cause of heart attack and stroke in humans. Extreme hyperlipidemia induced in mice and rabbits enables modeling many aspects of human atherosclerosis, but microscopic examination of plaques is possible only postmortem. Here we report that feeding adult zebrafish (Danio rerio) a high-cholesterol diet (HCD) resulted in hypercholesterolemia, remarkable lipoprotein oxidation, and fatty streak formation in the arteries. Feeding an HCD supplemented with a fluorescent cholesteryl ester to optically transparent fli1:EGFP zebrafish larvae in which endothelial cells express green fluorescent protein (GFP), and using confocal microscopy enabled monitoring vascular lipid accumulation and the endothelial cell layer disorganization and thickening in a live animal. The HCD feeding also increased leakage of a fluorescent dextran from the blood vessels. Administering ezetimibe significantly diminished the HCD-induced endothelial cell layer thickening and improved its barrier function. Feeding HCD to lyz:DsRed2 larvae in which macrophages and granulocytes express DsRed resulted in the accumulation of fluorescent myeloid cells in the vascular wall. Using a fluorogenic substrate for phospholipase A2 (PLA2), we observed an increased vascular PLA2 activity in live HCD-fed larvae compared to control larvae. Furthermore, by transplanting genetically modified murine cells into HCD-fed larvae, we demonstrated that toll-like receptor-4 was required for efficient in vivo lipid uptake by macrophages. These results suggest that the novel zebrafish model is suitable for studying temporal characteristics of certain inflammatory processes of early atherogenesis and the in vivo function of vascular cells.

Collaboration


Dive into the Yury I. Miller's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Longhou Fang

Houston Methodist Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Soo-Ho Choi

University of California

View shared research outputs
Top Co-Authors

Avatar

Soo Ho Choi

University of California

View shared research outputs
Top Co-Authors

Avatar

Jungsu Kim

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ayelet Gonen

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge