Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yury Kapelyukh is active.

Publication


Featured researches published by Yury Kapelyukh.


Molecular Pharmacology | 2011

Quantitative Prediction of Human Pregnane X Receptor and Cytochrome P450 3A4 Mediated Drug-Drug Interaction in a Novel Multiple Humanized Mouse Line

Maki Hasegawa; Yury Kapelyukh; Harunobu Tahara; Jost Seibler; Anja Rode; Sylvia Krueger; Dongtao N. Lee; Charles Roland Wolf; Nico Scheer

Cytochrome P450 (P450) 3A4 is the predominant P450 enzyme expressed in human liver and intestine, and it is involved in the metabolism of approximately 50% of clinically used drugs. Because of the differences in the multiplicity of CYP3A genes and the poor correlation of substrate specificity of CYP3A proteins between species, the extrapolation of CYP3A-mediated metabolism of a drug from animals to man is difficult. This situation is further complicated by the fact that the predictability of the clinically common drug-drug interaction of pregnane X receptor (PXR)-mediated CYP3A4 induction by animal studies is limited as a result of marked species differences in the interaction of many drugs with this receptor. Here we describe a novel multiple humanized mouse line that combines a humanization for PXR, the closely related constitutive androstane receptor, and a replacement of the mouse Cyp3a cluster with a large human genomic region carrying CYP3A4 and CYP3A7. We provide evidence that this model shows a human-like CYP3A4 induction response to different PXR activators, that it allows the ranking of these activators according to their potency to induce CYP3A4 expression in the human liver, and that it provides an experimental approach to quantitatively predict PXR/CYP3A4-mediated drug-drug interactions in humans.


Molecular Pharmacology | 2012

Modeling Human Cytochrome P450 2D6 Metabolism and Drug-drug Interaction by a Novel Panel of Knockout and Humanized Mouse Lines

Nico Scheer; Yury Kapelyukh; Jillian McEwan; Vincent Beuger; Lesley A. Stanley; Anja Rode; C. Roland Wolf

The highly polymorphic human cytochrome P450 2D6 enzyme is involved in the metabolism of up to 25% of all marketed drugs and accounts for significant individual differences in response to CYP2D6 substrates. Because of the differences in the multiplicity and substrate specificity of CYP2D family members among species, it is difficult to predict pathways of human CYP2D6-dependent drug metabolism on the basis of animal studies. To create animal models that reflect the human situation more closely and that allow an in vivo assessment of the consequences of differential CYP2D6 drug metabolism, we have developed a novel straightforward approach to delete the entire murine Cyp2d gene cluster and replace it with allelic variants of human CYP2D6. By using this approach, we have generated mouse lines expressing the two frequent human protein isoforms CYP2D6.1 and CYP2D6.2 and an as yet undescribed variant of this enzyme, as well as a Cyp2d cluster knockout mouse. We demonstrate that the various transgenic mouse lines cover a wide spectrum of different human CYP2D6 metabolizer phenotypes. The novel humanization strategy described here provides a robust approach for the expression of different CYP2D6 allelic variants in transgenic mice and thus can help to evaluate potential CYP2D6-dependent interindividual differences in drug response in the context of personalized medicine.


Drug Metabolism and Disposition | 2008

Multiple Substrate Binding by Cytochrome P450 3A4: Estimation of the Number of Bound Substrate Molecules

Yury Kapelyukh; Mark J. I. Paine; Jean-Didier Maréchal; Michael J. Sutcliffe; C. Roland Wolf; Gordon C. K. Roberts

Cytochrome P450 3A4, a major drug-metabolizing enzyme in man, is well known to show non-Michaelis-Menten steady-state kinetics for a number of substrates, indicating that more than one substrate can bind to the enzyme simultaneously, but it has proved difficult to obtain reliable estimates of exactly how many substrate molecules can bind. We have used a simple method involving studies of the effect of large inhibitors on the Hill coefficient to provide improved estimates of substrate stoichiometry from simple steady-state kinetics. Using a panel of eight inhibitors, we show that at least four molecules of the widely used CYP3A4 substrate 7-benzyloxyquinoline can bind simultaneously to the enzyme. Computational docking studies show that this is consistent with the recently reported crystal structures of the enzyme. In the case of midazolam, which shows simple Michaelis-Menten kinetics, the inhibitor effects demonstrate that two molecules must bind simultaneously, consistent with earlier evidence, whereas for diltiazem, the experiments provide no evidence for the binding of more than one molecule. The consequences of this “inhibitor-induced cooperativity” for the prediction of pharmacokinetics and drug-drug interactions are discussed.


Drug Metabolism and Disposition | 2010

In vivo responses of the human and murine pregnane X receptor to dexamethasone in mice

Nico Scheer; Jillian Ross; Yury Kapelyukh; Anja Rode; C. Roland Wolf

Dexamethasone (DEX) is a potent and widely used anti-inflammatory and immunosuppressant glucocorticoid. It can bind and activate the pregnane X receptor (PXR), which plays a critical role as xenobiotic sensor in mammals to induce the expression of many enzymes, including cytochromes P450 in the CYP3A family. This induction results in its own metabolism. We have used a series of transgenic mouse lines, including a novel, improved humanized PXR line, to compare the induction profile of PXR-regulated drug-metabolizing enzymes after DEX administration, as well as looking at hepatic responses to rifampicin (RIF). The new humanized PXR model has uncovered further intriguing differences between the human and mouse receptors in that RIF only induced Cyp2b10 in the new humanized model. DEX was found to be a much more potent inducer of Cyp3a proteins in wild-type mice than in mice humanized for PXR. To assess whether PXR is involved in the detoxification of DEX in the liver, we analyzed the consequences of high doses of the glucocorticoid on hepatotoxicity on different PXR genetic backgrounds. We also studied these effects in an additional mouse model in which functional mouse Cyp3a genes have been deleted. These strains exhibited different sensitivities to DEX, indicating a protective role of the PXR and CYP3A proteins against the hepatotoxicity of this compound.


Molecular Pharmacology | 2012

Generation and Characterization of Novel Cytochrome P450 Cyp2c Gene Cluster Knockout and CYP2C9 Humanized Mouse Lines

Nico Scheer; Yury Kapelyukh; Lynsey Chatham; Anja Rode; Sandra Buechel; Charles Roland Wolf

Compared with rodents and many other animal species, the human cytochrome P450 (P450) Cyp2c gene cluster varies significantly in the multiplicity of functional genes and in the substrate specificity of its enzymes. As a consequence, the use of wild-type animal models to predict the role of human CYP2C enzymes in drug metabolism and drug-drug interactions is limited. Within the human CYP2C cluster CYP2C9 is of particular importance, because it is one of the most abundant P450 enzymes in human liver, and it is involved in the metabolism of a wide variety of important drugs and environmental chemicals. To investigate the in vivo functions of cytochrome P450 Cyp2c genes and to establish a model for studying the functions of CYP2C9 in vivo, we have generated a mouse model with a deletion of the murine Cyp2c gene cluster and a corresponding humanized model expressing CYP2C9 specifically in the liver. Despite the high number of functional genes in the mouse Cyp2c cluster and the reported roles of some of these proteins in different biological processes, mice deleted for Cyp2c genes were viable and fertile but showed certain phenotypic alterations in the liver. The expression of CYP2C9 in the liver also resulted in viable animals active in the metabolism and disposition of a number of CYP2C9 substrates. These mouse lines provide a powerful tool for studying the role of Cyp2c genes and of CYP2C9 in particular in drug disposition and as a factor in drug-drug interaction.


Drug Metabolism and Disposition | 2013

A Role for Cytochrome b5 in the In Vivo Disposition of Anticancer and Cytochrome P450 Probe Drugs in Mice

Colin J. Henderson; Lesley A. McLaughlin; Robert Finn; Sebastien Ronseaux; Yury Kapelyukh; C. Roland Wolf

The role of microsomal cytochrome b5 (Cyb5) in defining the rate of drug metabolism and disposition has been intensely debated for several decades. Recently we described mouse models involving the hepatic or global deletion of Cyb5, demonstrating its central role in in vivo drug disposition. We have now used the cytochrome b5 complete null (BCN) model to determine the role of Cyb5 in the metabolism of ten pharmaceuticals metabolized by a range of cytochrome P450s, including five anticancer drugs, in vivo and in vitro. The extent to which metabolism was significantly affected by the absence of Cyb5 was substrate-dependent; AUC increased (75–245%) and clearance decreased (35–72%) for phenacetin, metoprolol, and chlorzoxazone. Tolbutamide disposition was not significantly altered by Cyb5 deletion, while for midazolam clearance was decreased by 66%. The absence of Cyb5 had no effect on gefitinib and paclitaxel disposition, while significant changes in the in vivo pharmacokinetics were measured for: cyclophosphamide [maximum plasma concentration (Cmax) and terminal half-life increased 55% and 40%, respectively], tamoxifen (AUClast and Cmax increased 370% and 233%, respectively), and anastrozole (AUC and terminal half-life increased 125% and 62%, respectively; clearance down 80%). These data provide strong evidence that both hepatic and extrahepatic Cyb5 levels are an important determinant of in vivo drug disposition catalyzed by a range of cytochrome P450s, including currently prescribed anticancer agents, and that individuality in Cyb5 expression could be a significant determinant in rates of drug disposition in man.


Drug Metabolism and Disposition | 2015

Defining Human Pathways of Drug Metabolism In Vivo through the Development of a Multiple Humanized Mouse Model.

Nico Scheer; Yury Kapelyukh; Anja Rode; Oswald S; Busch D; Lesley A. McLaughlin; De Lin; Colin J. Henderson; Charles Roland Wolf

Variability in drug pharmacokinetics is a major factor in defining drug efficacy and side effects. There remains an urgent need, particularly with the growing use of polypharmacy, to obtain more informative experimental data predicting clinical outcomes. Major species differences in multiplicity, substrate specificity, and regulation of enzymes from the cytochrome P450–dependent mono-oxygenase system play a critical role in drug metabolism. To develop an in vivo model for predicting human responses to drugs, we generated a mouse, where 31 P450 genes from the Cyp2c, Cyp2d, and Cyp3a gene families were exchanged for their relevant human counterparts. The model has been improved through additional humanization for the nuclear receptors constitutive androgen receptor and pregnane X receptor that control the expression of key drug metabolizing enzymes and transporters. In this most complex humanized mouse model reported to date, the cytochromes P450 function as predicted and we illustrate how these mice can be applied to predict drug-drug interactions in humans.


Archive | 2015

CHAPTER 7:Application of Humanised and Other Transgenic Models to Predict Human Responses to Drugs

C. Roland Wolf; Yury Kapelyukh; Nico Scheer; Colin J. Henderson

The use of transgenic animal models has transformed our knowledge of complex biochemical pathways in vivo. It has allowed disease processes to be modelled and used in the development of new disease prevention and treatment strategies. They can also be used to define cell- and tissue-specific pathways of gene regulation. A further major application is in the area of preclinical development where such models can be used to define pathways of chemical toxicity, and the pathways that regulate drug disposition. One major application of this approach is the humanisation of mice for the proteins that control drug metabolism and disposition. Such models can have numerous applications in the development of drugs and in their more sophisticated use in the clinic.


CYP2D6: Genetics, Pharmacology and Clinical Relevance | 2014

CYP2D6 substrates and drug metabolism

Yury Kapelyukh; Roland Wolf


Drug Metabolism and Pharmacokinetics | 2017

The application of knockout and humanized models to study human pathways of anti-cancer drug metabolism

C. Roland Wolf; A. Kenneth MacLeod; De Lin; Nico Scheer; Yury Kapelyukh; Colin J. Henderson

Collaboration


Dive into the Yury Kapelyukh's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

De Lin

University of Dundee

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge