Yury O. Nunez Lopez
Translational Research Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yury O. Nunez Lopez.
Scientific Reports | 2016
Attila A. Seyhan; Yury O. Nunez Lopez; Hui Xie; Fanchao Yi; Clayton E. Mathews; Magdalena Pasarica; Richard E. Pratley
The clinical presentation of diabetes sometimes overlaps, contributing to ambiguity in the diagnosis. Thus, circulating pancreatic islet-enriched microRNAs (miRNAs) might be useful biomarkers of β-cell injury/dysfunction that would allow more accurate subtyping of diabetes. We measured plasma levels of selected miRNAs in subjects with prediabetes (n = 12), type 2 diabetes (T2D, n = 31), latent autoimmune diabetes of adults (LADA, n = 6) and type 1 diabetes (T1D, n = 16) and compared them to levels in healthy control subjects (n = 27). The study was conducted at the Translational Research Institute for Metabolism and Diabetes (TRI-MD), Florida Hospital. MiRNAs including miR-375 (linked to β-cell injury), miR-21 (associated with islet inflammation), miR-24.1, miR-30d, miR-34a, miR-126, miR-146, and miR-148a were significantly elevated in subjects with various forms of diabetes compared to healthy controls. Levels of several miRNAs were significantly correlated with glucose responses during oral glucose tolerance testing, HbA1c, β-cell function, and insulin resistance in healthy controls, prediabetes, and T2D. These data suggest that miRNAs linked to β-cell injury and islet inflammation might be useful biomarkers to distinguish between subtypes of diabetes. This information could be used to predict progression of the disease, guide selection of optimal therapy and monitor responses to interventions, thus improving outcomes in patients with diabetes.
Aging Cell | 2015
Berta Victoria; Joseph M. Dhahbi; Yury O. Nunez Lopez; Lina Spinel; Hani Atamna; Stephen R. Spindler; Michal M. Masternak
Recent evidence demonstrates that serum levels of specific miRNAs significantly change with age. The ability of circulating sncRNAs to act as signaling molecules and regulate a broad spectrum of cellular functions implicates them as key players in the aging process. To discover circulating sncRNAs that impact aging in the long‐lived Ames dwarf mice, we conducted deep sequencing of small RNAs extracted from serum of young and old mice. Our analysis showed genotype‐specific changes in the circulating levels of 21 miRNAs during aging [genotype‐by‐age interaction (GbA)]. Genotype‐by‐age miRNAs showed four distinct expression patterns and significant overtargeting of transcripts involved in age‐related processes. Functional enrichment analysis of putative and validated miRNA targets highlighted cellular processes such as tumor suppression, anti‐inflammatory response, and modulation of Wnt, insulin, mTOR, and MAPK signaling pathways, among others. The comparative analysis of circulating GbA miRNAs in Ames mice with circulating miRNAs modulated by calorie restriction (CR) in another long‐lived mouse suggests CR‐like and CR‐independent mechanisms contributing to longevity in the Ames mouse. In conclusion, we showed for the first time a signature of circulating miRNAs modulated by age in the long‐lived Ames mouse.
Molecular and Cellular Endocrinology | 2017
Berta Victoria; Yury O. Nunez Lopez; Michal M. Masternak
Aging, the natural process of growing older, is characterized by a progressive deterioration of physiological homeostasis at the cellular, tissue, and organismal level. Metabolically, the aging process is characterized by extensive changes in body composition, multi-tissue/multi-organ insulin resistance, and physiological declines in multiple signaling pathways including growth hormone, insulin/insulin-like growth factor 1, and sex steroids regulation. With this review, we intend to consolidate published information about microRNAs that regulate critical metabolic processes relevant to aging. In certain occasions we uncover relationships likely relevant to aging, which has not been directly described before, such as the miR-451/AMPK axis. We have also included a provocative section highlighting the potential role in aging of a new designation of miRNAs, namely fecal miRNAs, recently discovered to regulate intestinal microbiota in mammals.
Molecular BioSystems | 2017
Yury O. Nunez Lopez; Gabriella Garufi; Attila A. Seyhan
Today obesity and type 2 diabetes (T2D) have both reached epidemic proportions. However, our current understanding of the primary mechanisms leading to these diseases is still limited due to the complex multifactorial nature of the underlying phenomena. We hypothesize that the levels of specific cytokines and miRNAs vary across the diabetes spectrum and unique signatures associated with them may serve as early biomarkers of the disease and provide insights into respective pathogenetic mechanisms. In this study, we measured the circulating levels of cytokines and microRNAs (miRNAs) in lean and obese humans with prediabetes (n = 21), T2D (n = 17), and healthy controls (n = 20) (ORIGINS trial, NCT02226640). Data were analyzed by fitting linear models adjusted for confounding variables (BMI, age, and gender in the diabetes context and age, gender, and diabetes status in the obesity context) and implementing nonparametric randomization-based tests for statistical inference. Group differences and correlations (r > 0.3) between variables with P < 0.05 were considered significant. False discovery rates (FDR) correcting for multiple testing were calculated using the Benjamini-Hochberg correction. We found a number of circulating cytokines and miRNAs deregulated in subjects with obesity, prediabetes, and T2D. Specifically, cytokines IL-6, IL-8, IL-10, IL-12, and SFRP4, as well as miRNAs miR-21, miR-24.1, miR-27a, miR-28-3p, miR-29b, miR-30d, miR-34a, miR-93, miR-126, miR-146a, miR-148, miR-150, miR-155, and miR-223, significantly changed across the diabetes spectrum, and were associated with measures of pancreatic islet β cell function and glycemic control, among others. Notably, SFRP4 was the only studied cytokine that was significantly associated with obesity, prediabetes, and T2D, which underscores the important role of this molecule during disease development and progression. Our data suggest that changes in circulating miRNAs and cytokines may have clinical utility as biomarkers of prediabetes.
Reports of Practical Oncology & Radiotherapy | 2018
Yury O. Nunez Lopez; Berta Victoria; Paweł Golusiński; Wojciech Golusiński; Michal M. Masternak
Aim To characterize the miRNA expression profile in head and neck squamous cell carcinoma (HNSSC) accounting for a broad range of cancer subtypes and consequently identify an optimal miRNA signature with prognostic value. Background HNSCC is consistently among the most common cancers worldwide. Its mortality rate is about 50% because of the characteristic aggressive behavior of these cancers and the prevalent late diagnosis. The heterogeneity of the disease has hampered the development of robust prognostic tools with broad clinical utility. Materials and methods The Cancer Genome Atlas HNSC dataset was used to analyze level 3 miRNA-Seq data from 497 HNSCC patients. Differential expression (DE) analysis was implemented using the limma package and multivariate linear model that adjusted for the confounding effects of age at diagnosis, gender, race, alcohol history, anatomic neoplasm subdivision, pathologic stage, T and N stages, and vital status. Random forest (RF) for survival analysis was implemented using the randomForestSRC package. Results A characteristic DE miRNA signature of HNSCC, comprised of 11 upregulated (i.e., miR-196b-5p, miR-1269a, miR-196a-5p, miR-4652-3p, miR-210-3p, miR-1293, miR-615-3p, miR-503-5p, miR-455-3p, miR-205-5p, and miR-21-5p) and 9 downregulated (miR-376c-3p, miR-378c, miR-29c-3p, miR-101-3p, miR-195-5p, miR-299-5p, miR-139-5p, miR-6510-3p, miR-375) miRNAs was identified. An optimal RF survival model was built from seven variables including age at diagnosis, miR-378c, miR-6510-3p, stage N, pathologic stage, gender, and race (listed in order of variable importance). Conclusions The joint differential miRNA expression and survival analysis controlling for multiple confounding covariates implemented in this study allowed for the identification of a previously undetected prognostic miRNA signature characteristic of a broad range of HNSCC.
Journal of Nutritional Biochemistry | 2017
Yury O. Nunez Lopez; Anastassios G. Pittas; Richard E. Pratley; Attila A. Seyhan
Vitamin D may play an important role in modifying the risk of type 2 diabetes. Supplementation with cholecalciferol has been shown to improve β cell function and to attenuate the rise in glycated hemoglobin in people at high risk of diabetes. We examined whether circulating microRNAs (miRNAs) reflect disease progression and/or respond to vitamin D supplementation. We measured plasma levels of select miRNAs implicated in diabetes in people with prediabetes treated either with placebo (n=21) or 2000 U of cholecalciferol daily (n=21) for 4 months in the Calcium and Vitamin D for Diabetes Mellitus trial and compared the baseline-adjusted changes after correcting for age, body mass index, race, time of study entry (season) and baseline disposition index. Circulating levels of miR-7 (sixfold reduction, P=.01), miR-152 (1.5-fold increase, P=.03), and miR-192 (1.7-fold reduction, P=.026) displayed significant treatment-by-time interactions between the placebo- and the vitamin-D-treated groups. Plasma levels of miR-7 were reduced in the vitamin D and increased in the placebo group. The change in miR-152 positively correlated with the change in levels of the circulating metabolite 25-hydroxyvitamin D (r=0.33, P=.046) and negatively correlated with the change in glycated hemoglobin (r=-0.37, P=.024). The change in miR-192 positively correlated with the change in fasting glucose (r=0.41, P<.011). In conclusion, reduction of circulating miR-7 and miR-192, accompanied by elevation of miR-152, reflects a beneficial metabolic response to vitamin D treatment in people with prediabetes. These miRNAs may be useful biomarkers in diabetes prevention trials and other studies of vitamin D.
Scientific Reports | 2018
Augusto Schneider; Berta Victoria; Yury O. Nunez Lopez; Wiktoria Maria Suchorska; Wojciech Barczak; Agnieszka Sobecka; Wojciech Golusiński; Michal M. Masternak; Paweł Golusiński
Head and neck cancer is characterized by malignant tumors arising from the epithelium covering the upper aerodigestive tract, and the majority of these epithelial malignancies are squamous cell carcinomas (SCCs) of the oral cavity (OSCCs). The aim of the current work was to identify miRNAs regulated in OSCC cancerous tissue when compared to a healthy adjacent tissue and to verify the presence of the same miRNAs in the circulation of these patients. For that serum samples and biopsies of healthy and tumor tissues were collected from five patients diagnosed with OSCC of the oral cavity, RNA was extracted from these samples and microRNAs libraries were prepared and sequenced. A total 255 miRNAs were identified in tissue and 381 different miRNAs were identified in serum samples. When comparing the miRNA expression between tumor and healthy tissue we identified 48 miRNAs (25 down- and 23 up-regulated) that were differentially expressed (FDR < 0.05). From these 48 differentially expressed miRNAs in tissue, 30 miRNAs were also found in the serum of the same patients. hsa-miR-32-5p was up-regulated in tumor compared to healthy tissue in our study, and was previously shown to be up-regulated in the serum of OSCC patients. Therefore, this suggests that miRNAs can be used as potential non-invasive biomarkers of OSCC.
Frontiers in Oncology | 2018
Brittany Allen; Augusto Schneider; Berta Victoria; Yury O. Nunez Lopez; Mark T. Muller; Mateusz Szewczyk; Jakub Pazdrowski; Ewa Majchrzak; Wojciech Barczak; Wojciech Golusiński; Paweł Golusiński; Michal M. Masternak
The head and neck squamous cell carcinoma (HNSCC) represents one of the most common cancers in humans. Close to 600,000 new diagnoses are made every year worldwide and over half of diagnosed patients will not survive. In view of this low survival rate, the development of novel cell-based assays for HNSCC will allow more mechanistic approaches for specific diagnostics for each individual patient. The cell-based assays will provide more informative data predicting cellular processes in treated patient, which in effect would improve patient follow up. More importantly, it will increase the specificity and effectiveness of therapeutic approaches. In this study, we investigated the role of serum from HNSCC patients on the regulation of microRNA (miRNA) expression in exposed cells in vitro. Next-generation sequencing of miRNA revealed that serum from HNSCC patients induced a different miRNA expression profile than the serum from healthy individuals. Out of 377 miRNA detected, we found that 16 miRNAs were differentially expressed when comparing cells exposed to serum from HNSCC or healthy individuals. The analysis of gene ontologies and pathway analysis revealed that these miRNA target genes were involved in biological cancer-related processes, including cell cycle and apoptosis. The real-time PCR analysis revealed that serum from HNSCC patients downregulate the expression level of five genes involved in carcinogenesis and two of these genes—P53 and SLC2A1—are direct targets of detected miRNAs. These novel findings provide new insight into how cancer-associated factors in circulation regulate the expression of genes and regulatory elements in distal cells in favor of tumorigenesis. This has the potential for new therapeutic approaches and more specific diagnostics with tumor-specific cell lines or single-cell in vitro assays for personalized treatment and early detection of primary tumors or metastasis.
Obesity | 2017
Alok S. Pachori; Meenu Madan; Yury O. Nunez Lopez; Fanchao Yi; Christian Meyer; Attila A. Seyhan
To investigate the role of secreted frizzled‐related protein 3 (Sfrp3) in insulin sensitivity (ISi) and β‐cell function in humans across a spectrum of glucose homeostasis.
International Journal of Endocrinology | 2018
Yury O. Nunez Lopez; Gabriella Garufi; Magdalena Pasarica; Attila A. Seyhan
Objective We explored the relationships among microRNAs (miRNAs) and SFRP4, as they relate to adipose tissue functions including lipolysis, glucose and glycerol turnover, and insulin sensitivity. Methods Abdominal adipose tissue (AbdAT) levels of thirteen microRNAs (miRNAs), SFRP4, and VEGF in lean nondiabetic subjects (n = 7), subjects with obesity (n = 5), and subjects with obesity and type 2 diabetes (T2DM) (n = 5) were measured by qPCR. Insulin sensitivity was measured by the euglycemic-hyperinsulinemic clamp. Osmium fixation and Coulter counting were used for adipocyte sizing. Data were analyzed using generalized linear models that adjusted for age, gender, and ethnicity. Results AbdAT miR-24, miR-30d, and miR-146a were elevated in subjects with obesity (P < 0.05) and T2DM (P < 0.1) and positively correlated with measures of percent body fat by DXA (rmiR.24 = 0.894, rmiR.146a = 0.883, P < 0.05), and AbdAT SFRP4 (rmiR.30 = 0.93, rmiR.146a = 0.88, P < 0.05). These three miRNAs additionally correlated among themselves (rmiR.24~miR.146a = 0.90, rmiR.30~miR.146a = 0.85, P < 0.01). Conclusions This study suggests a novel association between the elevated levels of miRNAs miR-24, miR-30d, and miR-146a (apparently coregulated) and the level of SFRP4 transcript in AbdAT of subjects with obesity and T2DM. These molecules might be part of a regulatory loop involved in AbdAT remodeling/adiposity and systemic insulin resistance. This trial is registered with NCT00704197.