Yury V. Matsuka
University of Minnesota
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yury V. Matsuka.
Journal of Bacteriology | 2007
Anatoly Severin; Elliott Nickbarg; Joseph L. Wooters; Shakey A. Quazi; Yury V. Matsuka; Ellen Murphy; Ioannis K. Moutsatsos; Robert John Zagursky; Stephen B. Olmsted
Streptococcus pyogenes is a gram-positive human pathogen that causes a wide spectrum of disease, placing a significant burden on public health. Bacterial surface-associated proteins play crucial roles in host-pathogen interactions and pathogenesis and are important targets for the immune system. The identification of these proteins for vaccine development is an important goal of bacterial proteomics. Here we describe a method of proteolytic digestion of surface-exposed proteins to identify surface antigens of S. pyogenes. Peptides generated by trypsin digestion were analyzed by multidimensional tandem mass spectrometry. This approach allowed the identification of 79 proteins on the bacterial surface, including 14 proteins containing cell wall-anchoring motifs, 12 lipoproteins, 9 secreted proteins, 22 membrane-associated proteins, 1 bacteriophage-associated protein, and 21 proteins commonly identified as cytoplasmic. Thirty-three of these proteins have not been previously identified as cell surface associated in S. pyogenes. Several proteins were expressed in Escherichia coli, and the purified proteins were used to generate specific mouse antisera for use in a whole-cell enzyme-linked immunosorbent assay. The immunoreactivity of specific antisera to some of these antigens confirmed their surface localization. The data reported here will provide guidance in the development of a novel vaccine to prevent infections caused by S. pyogenes.
Infection and Immunity | 2000
Manuela Roggiani; Jennifer Stoehr; Stephen B. Olmsted; Yury V. Matsuka; Subramonia Pillai; Douglas H. Ohlendorf; Patrick M. Schlievert
ABSTRACT Streptococcal pyrogenic exotoxins (SPEs) are superantigens that have been implicated in causing streptococcal toxic shock syndrome (STSS). Most notably, SPE serotype A is made by nearly all M-protein serotype 1 and 3 streptococci, the M types most associated with the illness (these strains contain one or more other SPEs, and those proteins are likely also to contribute to disease). We have prepared double-, triple-, and hexa-amino-acid mutants of SPE A by PCR and other mutagenesis procedures. The sites chosen for mutation were solvent-exposed residues thought to be important for T-cell receptor (TCR) or major histocompatibility complex (MHC) class II interaction. These mutants were nonsuperantigenic for human peripheral blood mononuclear cells and rabbit and mouse splenocytes and were nonlethal in two rabbit models of STSS. In addition, these mutants stimulated protective antibody responses. Interestingly, mutants that altered toxin binding to MHC class II were more immunogenic than mutants altering TCR binding. Collectively, these studies indicate that multiple-site mutants of SPE A are toxoids that may have use in protecting against the toxins effects in STSS.
Journal of Immunology | 2000
John McCormick; Timothy J. Tripp; Stephen B. Olmsted; Yury V. Matsuka; Pamala J. Gahr; Douglas H. Ohlendorf; Patrick M. Schlievert
Streptococcal pyrogenic exotoxin C (SPE C) is a superantigen produced by many strains of Streptococcus pyogenes that (along with streptococcal pyrogenic exotoxin A) is highly associated with streptococcal toxic shock syndrome (STSS) and other invasive streptococcal diseases. Based on the three-dimensional structure of SPE C, solvent-exposed residues predicted to be important for binding to the TCR or the MHC class II molecule, or important for dimerization, were generated. Based on decreased mitogenic activity of various single-site mutants, the double-site mutant Y15A/N38D and the triple-site mutant Y15A/H35A/N38D were constructed and analyzed for superantigenicity, toxicity (lethality), immunogenicity, and the ability to protect against wild-type SPE C-induced STSS. The Y15A/N38D and Y15A/H35A/N38D mutants were nonmitogenic for rabbit splenocytes and human PBMCs and nonlethal in two rabbit models of STSS, yet both mutants were highly immunogenic. Animals vaccinated with the Y15A/N38D or Y15A/H35A/N38D toxoids were protected from challenge with wild-type SPE C. Collectively, these data indicate that the Y15A/N38D and Y15A/H35A/N38D mutants may be useful as toxoid vaccine candidates.
Infection and Immunity | 2002
Qi Cheng; Steven Debol; Hong Lam; Ron Eby; Lorri Edwards; Yury V. Matsuka; Stephen B. Olmsted; P. Patrick Cleary
ABSTRACT Group B streptococci (GBS) are among the most common causes of life-threatening neonatal infections. Vaccine development since the late 1970s has focused on the capsular polysaccharides, but a safe, effective product is still not available. Our quest for a vaccine turned to the streptococcal C5a peptidase (SCPB). This surface protein is antigenically conserved across most if not all serotypes. A murine model was used to assess the impact of SCPB on clearance of GBS from the lungs of intranasally infected animals. Mutational inactivation of SCPB resulted in more-rapid clearance of streptococci from the lung. Immunization with recombinant SCPB alone or SCPB conjugated to type III capsular polysaccharide produced serotype-independent protection, which was evidenced by more-rapid clearance of the serotype VI strain from the lungs. Immunization of mice with tetanus toxoid-type III polysaccharide conjugate did not produce protection, confirming that protection induced by SCPB conjugates was independent of type III polysaccharide antigen. Histological evaluation of lungs from infected mice revealed that pathology in animals immunized with SCPB or SCPB conjugates was significantly less than that in animals immunized with a tetanus toxoid-polysaccharide conjugate. These experiments suggest that inclusion of C5a peptidase in a vaccine will both add another level to and broaden the spectrum of the protection of a polysaccharide vaccine.
Clinical and Vaccine Immunology | 2012
Julio Cesar Hawkins; Srinivas Kodali; Yury V. Matsuka; Lisa K. McNeil; Terri Mininni; Ingrid L. Scully; John H. Vernachio; Elena Severina; Douglas Girgenti; Kathrin U. Jansen; Annaliesa S. Anderson; Robert G.K. Donald
ABSTRACT Staphylococcus aureus is a Gram-positive pathogen that causes devastating disease and whose pathogenesis is dependent on interactions with host cell factors. Staphylococcal clumping factor A (ClfA) is a highly conserved fibrinogen (Fg)-binding protein and virulence factor that contributes to host tissue adhesion and initiation of infection. ClfA is being investigated as a possible component of a staphylococcal vaccine. We report the development of an Fg-binding assay that is specific for ClfA-mediated binding. Using the assay, we show that despite the presence of anti-ClfA antibodies, human sera from unvaccinated subjects are unable to prevent the binding of S. aureus to an Fg-coated surface. In contrast, antibodies elicited by a recombinant ClfA-containing vaccine were capable of blocking the ClfA-dependent binding of a diverse and clinically relevant collection of staphylococcal strains to Fg. These functional antibodies were also able to displace S. aureus already bound to Fg, suggesting that the ligand-binding activity of ClfA can be effectively neutralized through vaccination.
Vaccine | 2009
Jasdeep Singh Nanra; Yekaterina Timofeyeva; Sandra M. Buitrago; Bret R. Sellman; Deborah A. Dilts; Pamela S. Fink; Lorna Nunez; Michael Hagen; Yury V. Matsuka; Terri Mininni; Duzhang Zhu; Viliam Pavliak; Bruce A. Green; Kathrin U. Jansen; Annaliesa S. Anderson
There is a clear unmet medical need for a vaccine that would prevent infections from Staphylococcus aureus (S. aureus). To validate antigens as potential vaccine targets it has to be demonstrated that the antigens are expressed in vivo. Using murine bacteremia and wound infection models, we demonstrate that the expression of clumping factor A (ClfA) and capsular polysaccharide antigens are heterogeneous and dependent on the challenge strains examined and the in vivo microenvironment. We also demonstrate opsonophagocitic activity mediated by either antigen is not impeded by the presence of the other antigen. The data presented in this report support a multiantigen approach for the development of a prophylactic S. aureus vaccine to ensure broad coverage against this versatile pathogen.
Infection and Immunity | 2008
Bret R. Sellman; Yekaterina Timofeyeva; Jasdeep Singh Nanra; Adrienne Scott; James P. Fulginiti; Yury V. Matsuka; Steve M. Baker
ABSTRACT SdrG is a surface-associated fibrinogen binding protein present in most strains of Staphylococcus epidermidis. Surface expression of SdrG was not detected by flow cytometry or immunofluorescence microscopy on S. epidermidis 0-47 grown in nutrient broth or in the presence of human serum. sdrG transcript levels increased 1 hour following a shift from growth in nutrient broth to growth in the bloodstream of a mouse and resulted in a concomitant increase in protein levels as detected by immunofluorescence microscopy. The environmental signal(s) resulting in the increase in expression is elusive, as growth under conditions known to mimic in vivo conditions (elevated CO2, iron limitation, human serum, and citrated human blood) did not affect expression of SdrG. Immunizing mice with either the N1N2N3 (amino acids 50 to 597) or N2N3 (amino acids 273 to 597) subdomain of the N-terminal A domain of recombinant SdrG (rSdrG) elicited a robust antibody response; however, only mice vaccinated with rSdrGN23 exhibited a significant reduction in 0-47 recovered after experimental infection. Since SdrG is expressed early during infection in response to specific host environmental cues present in the bloodstream and since antibodies to it are effective in reducing bacteremia, SdrG possesses attributes of a vaccine component effective against the pathogenic form of the ubiquitous human commensal S. epidermidis.
Vaccine | 2004
P. Patrick Cleary; Yury V. Matsuka; Thu Huynh; Hong Lam; Stephen B. Olmsted
Infection and Immunity | 1999
Yury V. Matsuka; Subramonia Pillai; Siddeswar Gubba; James M. Musser; Stephen B. Olmsted
Proceedings of the National Academy of Sciences of the United States of America | 2005
C. Kent Brown; Zu Yi Gu; Yury V. Matsuka; Sai Sudha Purushothaman; Laurie A. Winter; P. Patrick Cleary; Stephen B. Olmsted; Douglas H. Ohlendorf; Cathleen A. Earhart