Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yusho Aruga is active.

Publication


Featured researches published by Yusho Aruga.


Phycological Research | 2004

Morphological and AFLP variation of Porphyra yezoensis Ueda form, narawaensis Miura (Bangiales, Rhodophyta)

Kyosuke Niwa; Norio Kikuchi; Mitsunobu Iwabuchi; Yusho Aruga

Detailed morphological observations were made on two strains of cultivated Porphyra: HG‐1 (pure line isolated from Dai‐1) and Noriken‐4 (parental strain of a pure line HG‐4). The two strains were identified as P. yezoensis f. narawaensis based on their macroscopic and microscopic features, such as long linear or oblanceolate blades up to 50 cm in maximum length, division formulae of spermatangia and zygotosporangia, shape of trichogynes and carpogonia, and the second transverse divisional plane formed at the division from c/2 to c/4 in zygotosporangia. Gametophytic blades from two completely homozygous conchocelis strains isolated in this study (HG‐1 and HG‐4) were cultured under the same conditions and compared to confirm whether the differences in their shapes are genetically determined. The shape of blades from both of conchospores and monospores was always more slender in HG‐4 than in HG‐1 at the same blade age, suggesting that the difference in the blade shape between the two pure lines is due to genetic variation. To estimate the level of genetic variation the two pure lines were subjected to amplified fragment length polymorphism fingerprint analysis. A total of 230 bands were detected in HG‐1 and HG‐4 using eight selective primer pairs, and the number of polymorphic bands was only two in HG‐1. These results indicate that the two pure lines certainly show genetic variation, which is, however, at an extremely low level. The importance of pure‐line breeding and the origin of currently cultivated Porphyra are discussed. This is the first report to identify currently cultivated Porphyra strains in Japan based on combined results of detailed morphological observations and molecular analysis.


Journal of Phycology | 2005

Morphological and molecular analysis of the endangered species Porphyra tenera (Bangiales, Rhodophyta)

Kyosuke Niwa; Norio Kikuchi; Yusho Aruga

Porphyra tenera Kjellman, widely cultivated in nori farms before the development of artificial seeding, is currently listed as an endangered species in Japan. To confirm whether a wild‐collected gametophytic blade was P. tenera or the closely related species P. yezoensis Ueda, morphological observations and molecular analyses were made on the pure line HGT‐1 isolated from a wild blade. This pure line was identified as P. tenera based on detailed morphological features. Sequences of the nuclear internal transcribed spacer region 1 and the plastid RUBISCO spacer revealed that P. tenera HGT‐1 was clearly different from P. yezoensis f. narawaensis Miura, the main species cultivated in Japan. PCR‐RFLP analysis of the internal transcribed spacer region was found to be a convenient method for rapid discrimination between P. tenera and cultivated P. yezoensis. The restriction patterns generated by the endonucleases Dra I and Hae III were useful for differentiating between both gametophytic and conchocelis stages of P. tenera HGT‐1 and P. yezoensis f. narawaensis strains. Thus, PCR‐RFLP analysis will serve as a valuable tool for rapid species identification of cultivated Porphyra strains, culture collections of Porphyra strains for breeding material and conservation of biodiversity, and, as codominant cleaved amplified polymorphic sequence markers for interspecific hybridization products between P. tenera and P. yezoensis f. narawaensis. Under the same culture conditions, rate of blade length increase and the blade length‐to‐width ratio were lower in P. tenera HGT‐1 than in P. yezoensis f. narawaensis HG‐4. The HGT‐1 became mature more rapidly than HG‐4 and had thinner blades.


Journal of Applied Phycology | 2000

Induction and characterization of pigmentation mutants in Porphyra yezoensis (Bangiales, Rhodophyta).

Xing-Hong Yan; Yuji Fujita; Yusho Aruga

Porphyra yezoensis Ueda conchospore germlings (1–4-cell stages) were treated with N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) for inducing mutations. Three kinds of color-mutated gametophytic blades, which were composed of the mutated cells wholly, sectorially or spottedly, were obtained; and most of them were sectorially variegated blades. The highest frequency of these mutated blades was 1.3%. Four different pigmentation mutant strains were obtained by regenerating single cells and protoplasts that were enzymatically isolated from the mutated sectors of the sectorially variegated blades. The mutants were relatively stable in color in both gametophytic blade and conchocelis phases. In the two phases, each mutant strain showed characteristic differences in the in vivo absorption spectra, and had different pigment contents of major photosynthetic pigments (chlorophyll a, phycoerythrin and phycocyanin) as compared with the wild-type and with each other. The gametophytic blades from the four mutant lines showed significant differences in growth and photosynthetic rates, when they were cultured in the same conditions. By crossing the mutant with the wild-type, it was found that the color phenotypes of two mutants reported above, were resulted from two mutations in different genes, respectively.


Journal of Applied Phycology | 2003

Rapid DNA extraction from conchocelis and ITS-1 rDNA sequences of seven strains of cultivated Porphyra yezoensis (Bangiales, Rhodophyta)

Kyosuke Niwa; Yusho Aruga

In order to extract DNA rapidly from cultivated Porphyra, we extracted total DNA from conchocelis using the ISOPLANT II kit (Nippon Gene) without liquid nitrogen treatment or CsCl-gradient ultracentrifugation. By confirming the reproducibility of RAPD patterns, it is concluded that the quality of the extracted DNA is sufficient to use as a template for molecular investigation. Using this rapid method, the nuclear ribosomal DNA of the internal transcribed spacer (ITS) regions was amplified from seven strains of cultivated Porphyra, which had been maintained as free-living conchocelis by subculturing in the laboratory. From the amplified DNAs, the ITS-1 sequences were determined in order to identify the species and genetic relationship of the strains. The sequences were identical in the seven strains, and all the strains were identified as P. yezoensis. Furthermore, the gametophytic blades of these strains showed long linear or oblanceolate shapes in the laboratory culture. It was concluded that these strains are P. yezoensis form. narawaensis. This rapid DNA extraction method from conchocelis will be a powerful tool for phylogenetic analysis and for genetic improvement of cultivated Porphyra.


Phycological Research | 2001

Photosynthesis and respiration in bladelets of Ecklonia cava Kjellman (Laminariales, Phaeophyta) in two localities with different temperature conditions

Yukihiko Serisawa; Yasutsugu Yokohama; Yusho Aruga; Jiro Tanaka

Characteristics of photosynthesis and respiration of bladelets were compared between Ecklonia cava Kjellman sporophytes growing in a warmer temperate locality (Tei, Kochi Pref., southern Japan) and in a cooler temperate locality (Nabeta, Shizuoka Pref., central Japan). Photosynthesis and respiration were measured with a differential gas‐volumeter (Productmeter). In photosynthesis‐light curves at 20°C, the rate of net photosynthesis was almost the same at light intensities lower than 25 μmol m−2 s−1 and the light‐saturation occurred at 200–400 μmol m−2s−1 in plants of both localities. The light‐saturated net photosynthetic rates were higher in winter and spring than in summer and autumn in both plants. The optimum temperature for net photosynthesis at 400 μmol m−2s−1 was 27°C throughout the year in the Tei plant and 25–27°C in the Nabeta plant. The decrease of net photosynthetic rates in the supraoptimal temperature range up to 29°C was sharper in winter and spring than in summer and autumn in both plants, being smaller in the Tei plant than in the Nabeta plant in all seasons. The dark respiration rate always increased with water temperature rise in both plants. No clear differences were found in the dark respiration rate between Tei and Nabeta plants except that when measured against dry weight, the Tei plant showed a slightly lower rate as compared with the Nabeta plant.


Fisheries Science | 2006

Identification of currently cultivated Porphyra species by PCR-RFLP analysis

Kyosuke Niwa; Yusho Aruga

Porphyra yezoensis and P. tenera are the representative species of the marine crop Porphyra (nori) in Japan. Since the two species are extremely similar to each other in morphology, nori breeders have tentatively classified many strains of cultivated Porphyra into the two species without strict species identification. In order to facilitate rapid and reliable identification of the many strains of Porphyra currently cultivated in various Japanese regions, 24 conchocelis strains were examined by polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) analysis using the plastid RuBisCo spacer and the nuclear internal transcribed spacer regions. From the results, all the strains were identified as P. yezoensis f. narawaensis, and P. tenera was not detected. Hence, it was confirmed that most of the Porphyra strains currently cultivated in Japan are P. yezoensis f. narawaensis, and that intensive selective breeding has led to a reduced genetic diversity in the stock used for nori cultivation.


Phycological Research | 2005

Confirmation of cultivated Porphyra tenera (Bangiales, Rhodophyta) by polymerase chain reaction restriction fragment length polymorphism analyses of the plastid and nuclear DNA

Kyosuke Niwa; Atsushi Kobiyama; Yusho Aruga

Polymerase chain reaction restriction fragment length polymorphism (PCR‐RFLP) analysis of the plastid ribulose‐1,5‐bisphosphate carboxylase (RuBisCo) spacer region was developed for a more reliable and rapid species identification of cultivated Porphyra in combination with PCR‐RFLP analysis of the nuclear internal transcribed spacer (ITS) region. From the PCR‐RFLP analyses of the plastid and nuclear DNA, we examined seven strains of conchocelis that were used for cultivation as Porphyra tenera Kjellman but without strict species identification. The PCR‐RFLP analyses suggested that two strains, C‐32 and 90‐02, were cultivated P. tenera and that the other five strains, C‐24, C‐28, C‐29, C‐30 and M‐1, were Porphyra yezoensis f. narawaensis Miura. To identify species more accurately and to reveal additional genetic variation, the two strains C‐32 and 90‐02 were further studied by sequencing their RuBisCo spacer and ITS‐1 regions. Although RuBisCo spacer sequences of the two strains were identical to each other, each of their ITS‐1 sequences showed a single substitution. The sequence data again confirmed that the two strains (C‐32 and 90‐02) were cultivated P. tenera, and suggested that the two strains showed some genetic variation. We concluded that PCR‐RFLP analysis of the plastid and nuclear DNA is a powerful tool for reliable and rapid species identification of many strains of cultivated Porphyra in Japan and for the collection of genetically variable breeding material of Porphyra.


Phycological Research | 2000

Genetic analysis of artificial pigmentation mutants in Porphyra yezoensis Ueda (Bangiales, Rhodophyta)

Xing-Hong Yan; Yusho Aruga

Porphyra yezoensis Ueda artificial pigmentation mutants, yel (green), fre (red‐orange) and bop (pink), obtained by treatment with /V‐methyl‐/V′‐nitro‐N‐nitrosoguanidine, were genetically analysed. The mutations associated with color phenotypes are recessive because all of the heterozygous conchocelis resembled the wild type color when they were crossed with the wild type (wt). In the reciprocal crosses of yel × wt, both parental colors and eight types of blades appeared in the F1 gametophytic blades from the heterozygous conchocelis. Both colors segregated in the sectored F1 blades in a 1:1 ratio, indicating that the color pheno‐type of yel resulted from a single mutation in the nuclear gene. In the reciprocal crosses of fre × wt, however, four colors and more than 40 types of blades appeared in the F1 blades from the heterozygous conchocelis, indicating that the color phenotype of fre resulted from two mutations in different genes. In the reciprocal crosses of bop×wt, three colors and 12 types of blades were observed in the F1 blades from the heterozygous conchocelis. Both parental colors appeared far more frequently than the third new color. These results indicated that the color phenotype of bop resulted from two closely linked mutations in different genes, and the epistasis occurred in the F1 blades. The mutants, yel, fre and bop, differ from the spontaneous green (C‐O), the red (H‐25) and the violet (V‐O) mutants of P. yezoensis, respectively.


Phycological Research | 2002

Growth of Ecklonia cava (Laminariales, Phaeophyta) sporophytes transplanted to a locality with different temperature conditions

Yukihiko Serisawa; Yasutsugu Yokohama; Yusho Aruga; Jiro Tanaka

Transplanting experiments were carried out to determine whether the small type sporophytes with short stipe of Ecklonia cava Kjellman (Laminariales, Phaeophyta) growing in a locality with warm temperatures, change into larger type with a long stipe when transplanted to a locality with cooler temperatures. Juvenile E. cava sporophytes, having a stipe shorter than 5 cm long were collected from Tei in Tosa Bay (southern Japan) (seawater temperature 15–29°C) and transplanted to Nabeta Bay (central Japan) (seawater temperature 13–25°C), where larger type E. cava sporophytes characterized by long stipe (ca 1 m) grow. They were attached to artificial reefs at the sea bottom (9 m depth) in Nabeta Bay to monitor their growth. For comparison, juvenile E. cava sporophytes of almost similar size growing in Nabeta Bay were also transplanted in the same way to the same experimental site. Observations of growth of sporophytes from Tei and Nabeta were carried out monthly for 2 years from November 1995 to October 1997. The transplanted Tei and Nabeta sporophytes showed an increase in stipe length and diameter from winter to spring, whereas almost no increase was observed during summer and autumn. At the end of the study period, the stipe of Nabeta sporophytes reached 25.6 cm in length and 17.0 mm in diameter, whereas that of Tei sporophytes reached 11.1 cm in length and 11.2 mm in diameter. The primary blade length was 16.0 cm in Nabeta sporophytes, whereas it was 5.5 cm in Tei sporophytes. Thus, Tei sporophytes still remained smaller than Nabeta sporophytes even under the same environmental conditions.


Journal of Applied Phycology | 2003

Free amino acid contents of the gametophytic blades from the green mutant conchocelis and the heterozygous conchocelis in Porphyra yezoensis Ueda (Bangiales, Rhodophyta)

Kyosuke Niwa; Hirofumi Furuita; Yusho Aruga

Free amino acid contents in green mutant(G-1) blades and sectored F1gametophytic blades with green andwild-type portions, which were developedfrom heterozygous conchocelis obtained by across between the wild type (0110) and thegreen mutant (G-1) of Porphyrayezoensis, were compared with those of thewild-type blades in laboratory culture. The contents of the major four free aminoacids (aspartic acid, glutamic acid,alanine and taurine) as well as those ofthe total free amino acids were highest inthe green mutant blades, intermediate inthe F1 gametophytic blades, and lowestin the wild-type blades. A similar trendwas obtained in the blades developed frommonospores of the F1 gametophyticblades. In addition, the green-typesectors also had a higher content of thefour major free amino acids and total freeamino acids compared with the wild-typesectors in the F1 blades cultivated ata nori farm. The green mutant ischaracterized by higher contents of thefour major free amino acids compared withthe wild type, which has a higher growthrate. Hence, it is considered that thesectored F1 gametophytic bladesproduced from the heterozygous conchocelishave both parental advantages (high freeamino acid contents and high growth rate)and compensate for both parentaldisadvantages. This seems to be one of thepossible ways of genetic improvement inregards to the taste of nori and stableproduction in Porphyra cultivation.

Collaboration


Dive into the Yusho Aruga's collaboration.

Top Co-Authors

Avatar

Jiro Tanaka

Tokyo University of Marine Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Norio Kikuchi

American Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge