Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yusuf Akhter is active.

Publication


Featured researches published by Yusuf Akhter.


Biochimie | 2012

The PE/PPE multigene family codes for virulence factors and is a possible source of mycobacterial antigenic variation: perhaps more?

Yusuf Akhter; Matthias T. Ehebauer; Sangita Mukhopadhyay; Seyed E. Hasnain

The PE/PPE multigene family codes for approximately 10% of the Mycobacterium tuberculosis proteome and is encoded by 176 open reading frames. These proteins possess, and have been named after, the conserved proline-glutamate (PE) or proline-proline-glutamate (PPE) motifs at their N-terminus. Their genes have a conserved structure and repeat motifs that could be a potential source of antigenic variation in M. tuberculosis. PE/PPE genes are scattered throughout the genome and PE/PPE pairs are usually encoded in bicistronic operons although this is not universally so. This gene family has evolved by specific gene duplication events. PE/PPE proteins are either secreted or localized to the cell surface. Several are thought to be virulence factors, which participate in evasion of the host immune response. This review summarizes the current knowledge about the gene family in order to better understand its biological function.


Molecular Systems Biology | 2010

Proteome‐wide identification of mycobacterial pupylation targets

Christian Poulsen; Yusuf Akhter; Amy Hye Won Jeon; Gerold Schmitt-Ulms; Helmut E. Meyer; Anja Stefanski; Kai Stühler; Matthias Wilmanns; Young-Hwa Song

Mycobacteria use a unique system for covalently modifying proteins based on the conjugation of a small protein, referred to as prokaryotic ubiquitin‐like protein (PUP). In this study, we report a proteome‐wide analysis of endogenous pupylation targets in the model organism Mycobacterium smegmatis. On affinity capture, a total of 243 candidate pupylation targets were identified by two complementary proteomics approaches. For 41 of these protein targets, direct evidence for a total of 48 lysine‐mediated pupylation acceptor sites was obtained by collision‐induced dissociation spectra. For the majority of these pupylation targets (38 of 41), orthologous genes are found in the M. tuberculosis genome. Interestingly, approximately half of these proteins are involved in intermediary metabolism and respiration pathways. A considerable fraction of the remaining targets are involved in lipid metabolism, information pathways, and virulence, detoxification and adaptation. Approximately one‐third of the genes encoding these targets are located in seven gene clusters, indicating functional linkages of mycobacterial pupylation targets. A comparison of the pupylome under different cell culture conditions indicates that substrate targeting for pupylation is rather dynamic.


FEBS Letters | 2006

Clusters of PE and PPE genes of Mycobacterium tuberculosis are organized in operons: Evidence that PE Rv2431c is co-transcribed with PPE Rv2430c and their gene products interact with each other

Smanla Tundup; Yusuf Akhter; Dorairajan Thiagarajan; Seyed E. Hasnain

About 10% of the coding capacity of the Mycobacterium tuberculosis (M. tb) genome is devoted to the PE/PPE family of genes scattered throughout the genome. We have identified 28 PE/PPE operons which are organized within the M. tb genome in such a way that most PE members are upstream to PPE members. One example of such a gene arrangement is the PPE gene Rv2430c, earlier shown by us to code for a highly antigenic protein eliciting strong B‐cell responses in TB patients [Choudhary, R.K., Mukhopadhyay, S., Chakhaiyar, P., Sharma, N., Murthy, K.J.R., Katoch V.M. and Hasnain, S.E. (2003) PPE antigen Rv2430c of Mycobacterium tuberculosis induces a strong B cell response. Infect. Immun. 71, 6338–6343], situated downstream to PE gene Rv2431c. Rv2431c and Rv2430c are transcribed as an operon. Expression of either rRv2431c or rRv2430c alone in E. coli limited their localization to the inclusion bodies. However, when they were co‐expressed, both the proteins appeared in the soluble fraction. These two proteins interact with each other and form oligomers when alone, however, when present together they exist as heteromer.


BMC Genomics | 2007

Ancestral European roots of Helicobacter pylori in India

S Manjulata Devi; Irshad Ahmed; Paolo Francalacci; M. Abid Hussain; Yusuf Akhter; Ayesha Alvi; Leonardo Antonio Sechi; Francis Mégraud; Niyaz Ahmed

BackgroundThe human gastric pathogen Helicobacter pylori is co-evolved with its host and therefore, origins and expansion of multiple populations and sub populations of H. pylori mirror ancient human migrations. Ancestral origins of H. pylori in the vast Indian subcontinent are debatable. It is not clear how different waves of human migrations in South Asia shaped the population structure of H. pylori. We tried to address these issues through mapping genetic origins of present day H. pylori in India and their genomic comparison with hundreds of isolates from different geographic regions.ResultsWe attempted to dissect genetic identity of strains by multilocus sequence typing (MLST) of the 7 housekeeping genes (atp A, efp, ure I, ppa, mut Y, trp C, yph C) and phylogeographic analysis of haplotypes using MEGA and NETWORK software while incorporating DNA sequences and genotyping data of whole cag pathogenicity-islands (cag PAI). The distribution of cag PAI genes within these strains was analyzed by using PCR and the geographic type of cag A phosphorylation motif EPIYA was determined by gene sequencing. All the isolates analyzed revealed European ancestry and belonged to H. pylori sub-population, hpEurope. The cag PAI harbored by Indian strains revealed European features upon PCR based analysis and whole PAI sequencing.ConclusionThese observations suggest that H. pylori strains in India share ancestral origins with their European counterparts. Further, non-existence of other sub-populations such as hpAfrica and hpEastAsia, at least in our collection of isolates, suggest that the hpEurope strains enjoyed a special fitness advantage in Indian stomachs to out-compete any endogenous strains. These results also might support hypotheses related to gene flow in India through Indo-Aryans and arrival of Neolithic practices and languages from the Fertile Crescent.


Scientific Reports | 2016

Attenuation of Pseudomonas aeruginosa biofilm formation by Vitexin: A combinatorial study with azithromycin and gentamicin

Manash C. Das; Padmani Sandhu; Priya Gupta; Prasenjit Rudrapaul; Utpal Chandra De; Prosun Tribedi; Yusuf Akhter; Surajit Bhattacharjee

Microbial biofilm are communities of surface-adhered cells enclosed in a matrix of extracellular polymeric substances. Extensive use of antibiotics to treat biofilm associated infections has led to the emergence of multiple drug resistant strains. Pseudomonas aeruginosa is recognised as a model biofilm forming pathogenic bacterium. Vitexin, a polyphenolic group of phytochemical with antimicrobial property, has been studied for its antibiofilm potential against Pseudomonas aeruginosa in combination with azithromycin and gentamicin. Vitexin shows minimum inhibitory concentration (MIC) at 260 μg/ml. It’s antibiofilm activity was evaluated by safranin staining, protein extraction, microscopy methods, quantification of EPS and in vivo models using several sub-MIC doses. Various quorum sensing (QS) mediated phenomenon such as swarming motility, azocasein degrading protease activity, pyoverdin and pyocyanin production, LasA and LasB activity of the bacteria were also evaluated. Results showed marked attenuation in biofilm formation and QS mediated phenotype of Pseudomonas aeruginosa in presence of 110 μg/ml vitexin in combination with azithromycin and gentamicin separately. Molecular docking of vitexin with QS associated LuxR, LasA, LasI and motility related proteins showed high and reasonable binding affinity respectively. The study explores the antibiofilm potential of vitexin against P. aeruginosa which can be used as a new antibiofilm agent against microbial biofilm associated pathogenesis.


International Journal of Medical Microbiology | 2015

The internal gene duplication and interrupted coding sequences in the MmpL genes of Mycobacterium tuberculosis: Towards understanding the multidrug transport in an evolutionary perspective.

Padmani Sandhu; Yusuf Akhter

The multidrug resistance has emerged as a major problem in the treatment of many of the infectious diseases. Tuberculosis (TB) is one of such disease caused by Mycobacterium tuberculosis. There is short term chemotherapy to treat the infection, but the main hurdle is the development of the resistance to antibiotics. This resistance is primarily due to the impermeable mycolic acid rich cell wall of the bacteria and other factors such as efflux of antibiotics from the bacterial cell. The MmpL (Mycobacterial Membrane Protein Large) proteins of mycobacteria are involved in the lipid transport and antibiotic efflux as indicated by the preliminary reports. We present here, comprehensive comparative sequence and structural analysis, which revealed topological signatures shared by the MmpL proteins and RND (Resistance Nodulation Division) multidrug efflux transporters. This provides evidence in support of the notion that they belong to the extended RND permeases superfamily. In silico modelled tertiary structures are in homology with an integral membrane component present in all of the RND efflux pumps. We document internal gene duplication and gene splitting events happened in the MmpL genes, which further elucidate the molecular functions of these putative transporters in an evolutionary perspective.


Biophysical Journal | 2010

Mapping Conformational Transitions in Cyclic AMP Receptor Protein: Crystal Structure and Normal-Mode Analysis of Mycobacterium tuberculosis apo-cAMP Receptor Protein

Pramod Kumar; Dhananjay C. Joshi; Mohd Akif; Yusuf Akhter; Seyed E. Hasnain; Shekhar C. Mande

Cyclic AMP (cAMP) receptor protein, which acts as the sensor of cAMP levels in cells, is a well-studied transcription factor that is best known for allosteric changes effected by the binding of cAMP. Although genetic and biochemical data on the protein are available from several sources, structural information about the cAMP-free protein has been lacking. Therefore, the precise atomic events that take place upon binding of cAMP, leading to conformational changes in the protein and its activation to bind DNA, have been elusive. In this work we solved the cAMP-free crystal structure of the Mycobacterium tuberculosis homolog of cAMP receptor protein at 2.9 A resolution, and carried out normal-mode analysis to map conformational transitions among its various conformational states. In our structure, the cAMP-binding domain holds onto the DNA-binding domain via strong hydrophobic interactions, thereby freezing the latter in a conformation that is not competent to bind DNA. The two domains release each other in the presence of cAMP, making the DNA-binding domain more flexible and allowing it to bind its cognate DNA via an induced-fit mechanism. The structure of the cAMP-free protein and results of the normal-mode analysis therefore highlight an elegant mechanism of the allosteric changes effected by the binding of cAMP.


Microbes and Infection | 2013

Host-lipidome as a potential target of protozoan parasites.

Abdur Rub; Mohd Arish; Syed Akhtar Husain; Niyaz Ahmed; Yusuf Akhter

Host-lipidome caters parasite interaction by acting as first line of recognition, attachment on the cell surface, intracellular trafficking, and survival of the parasite inside the host cell. Here, we summarize how protozoan parasites exploit host-lipidome by suppressing, augmenting, engulfing, remodeling and metabolizing lipids to achieve successful parasitism inside the host.


Archives of Biochemistry and Biophysics | 2016

The drug binding sites and transport mechanism of the RND pumps from Mycobacterium tuberculosis: Insights from molecular dynamics simulations.

Padmani Sandhu; Yusuf Akhter

RND permease superfamily drug efflux pumps are involved in multidrug transport and are attractive to study them for therapeutic purpose. In previous work we have classified 14 members of MmpL proteins belong to RND superfamily from Mycobacterium tuberculosis (Mtb) within its families [Sandhu P. and Akhter Y., 2015. Int. J. Med. Microbiol., 305:413-423]. In this study, structures of these proteins are homology modelled. The drug binding sites and channels are identified using local micro-stereochemistry and charge densities. Potential transport mechanism based on differential structural behaviour in the absence and on the binding of drug molecules is explained using the molecular dynamics simulation results. Our studies show two potential drug binding sites positioned at opposite ends of the transport tunnel leading from cytoplasmic to the periplasmic space across MmpL5 trimer. The drug binding have effects on the structural conformation of the protein leading to molecular-scale peristaltic movements. The free binding energy calculations reveal that the subsequent binding events are interdependent and may have implications on transport mechanism. Two drug binding sites and a continuous channel in the RND pump have been reported. The proposed ligand binding mechanism shows peristaltic movements in the channel leading to the drug efflux. This study would be helpful in understanding the molecular basis of drugs resistance in Mtb.


Immunobiology | 2016

A multi-subunit based, thermodynamically stable model vaccine using combined immunoinformatics and protein structure based approach

Aarti Rana; Yusuf Akhter

Immunizations with the conventional vaccines have failed to effectively inhibit the incidences and further dissemination of the infections. To address it, we have implemented protein structure based strategies to design an efficient multi-epitope subunit vaccine against Mycobacterium avium subsp. paratuberculosis (MAP). Previously reported immunodominant peptide epitope sequences from MAP1611 protein were conjugated together with a stretch of conserved amino acid residues of heparin-binding hemagglutinin, reported as a TLR4 agonist and was employed as an adjuvant to polarize the cellular responses toward host protective Th1 responses. These three types of component peptides were combined with the help of relevant linkers for efficient separation to improve and intensify the antigen processing and presentation. The primary structures of these multi peptides were 3-dimensional homology modeled to yield the final chimeric vaccine. Further, its conformational correctness and stability enhancement was assessed using molecular dynamics (MD) simulations. Finally, disulfide engineering in the most flexible regions of the molecule yielded three potential mutants, Y593C-E610C, Q631C-A634C and a double mutant Q631C-A634C/Y593C-E610C. The double mutant represents thermodynamically most stable version among them. It is potentially highly antigenic, soluble and non-allergen molecule interacting with the TLR receptor expressed on the immune cells. This vaccine contains both T-cell and several B-cell epitopes and an adjuvant which potentially possess protective cellular and humoral immune responses triggering properties. The presented vaccine strategy will be proven a promising pathogen specific candidate with wide therapeutic application against MAP which may be extended to other prevalent infections in future.

Collaboration


Dive into the Yusuf Akhter's collaboration.

Top Co-Authors

Avatar

Padmani Sandhu

Central University of Himachal Pradesh

View shared research outputs
Top Co-Authors

Avatar

Mushtaq Ahmed

Central University of Himachal Pradesh

View shared research outputs
Top Co-Authors

Avatar

Aarti Rana

Central University of Himachal Pradesh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Indu Kumari

Central University of Himachal Pradesh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shweta Thakur

Central University of Himachal Pradesh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge