Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yusufu N. Sulai is active.

Publication


Featured researches published by Yusufu N. Sulai.


Biomedical Optics Express | 2011

Noninvasive imaging of the human rod photoreceptor mosaic using a confocal adaptive optics scanning ophthalmoscope.

Alfredo Dubra; Yusufu N. Sulai; Jennifer L. Norris; Robert F. Cooper; David R. Williams; Joseph Carroll

The rod photoreceptors are implicated in a number of devastating retinal diseases. However, routine imaging of these cells has remained elusive, even with the advent of adaptive optics imaging. Here, we present the first in vivo images of the contiguous rod photoreceptor mosaic in nine healthy human subjects. The images were collected with three different confocal adaptive optics scanning ophthalmoscopes at two different institutions, using 680 and 775 nm superluminescent diodes for illumination. Estimates of photoreceptor density and rod:cone ratios in the 5°–15° retinal eccentricity range are consistent with histological findings, confirming our ability to resolve the rod mosaic by averaging multiple registered images, without the need for additional image processing. In one subject, we were able to identify the emergence of the first rods at approximately 190 μm from the foveal center, in agreement with previous histological studies. The rod and cone photoreceptor mosaics appear in focus at different retinal depths, with the rod mosaic best focus (i.e., brightest and sharpest) being at least 10 μm shallower than the cones at retinal eccentricities larger than 8°. This study represents an important step in bringing high-resolution imaging to bear on the study of rod disorders.


Biomedical Optics Express | 2011

Reflective afocal broadband adaptive optics scanning ophthalmoscope

Alfredo Dubra; Yusufu N. Sulai

A broadband adaptive optics scanning ophthalmoscope (BAOSO) consisting of four afocal telescopes, formed by pairs of off-axis spherical mirrors in a non-planar arrangement, is presented. The non-planar folding of the telescopes is used to simultaneously reduce pupil and image plane astigmatism. The former improves the adaptive optics performance by reducing the root-mean-square (RMS) of the wavefront and the beam wandering due to optical scanning. The latter provides diffraction limited performance over a 3 diopter (D) vergence range. This vergence range allows for the use of any broadband light source(s) in the 450-850 nm wavelength range to simultaneously image any combination of retinal layers. Imaging modalities that could benefit from such a large vergence range are optical coherence tomography (OCT), multi- and hyper-spectral imaging, single- and multi-photon fluorescence. The benefits of the non-planar telescopes in the BAOSO are illustrated by resolving the human foveal photoreceptor mosaic in reflectance using two different superluminescent diodes with 680 and 796 nm peak wavelengths, reaching the eye with a vergence of 0.76 D relative to each other.


Investigative Ophthalmology & Visual Science | 2011

Race- and sex-related differences in retinal thickness and foveal pit morphology.

Melissa Wagner-Schuman; Rick N. Nordgren; Yuming Lei; Daniel Odell; Hellen Chiao; Eric Weh; William Fischer; Yusufu N. Sulai; Alfredo Dubra; Joseph Carroll

PURPOSE To examine sex- and race-associated differences in macular thickness and foveal pit morphology by using spectral-domain optical coherence tomography (SD-OCT). METHODS One hundred eighty eyes of 90 healthy patients (43 women, 47 men) underwent retinal imaging with spectral-domain OCT. The lateral scale of each macular volume scan was corrected for individual differences in axial length by ocular biometry. From these corrected volumes, Early Treatment Diabetic Retinopathy Study (ETDRS) grids of retinal thickness were generated and compared between the groups. Foveal morphology was measured with previously described algorithms. RESULTS Compared with the Caucasians, the Africans and African Americans had reduced central subfield thickness. Central subfield thickness was also reduced in the women compared with the men, although the women also showed significant thinning in parafoveal regions. There was no difference between the sexes in foveal pit morphology; however, the Africans/African Americans had significantly deeper and broader foveal pits than the Caucasians. CONCLUSIONS Previous studies have reported race- and sex-associated differences in macular thickness, and the inference has been that these differences represent similar anatomic features. However, the data on pit morphology collected in the present study reveal an important and significant variation. Between the sexes, the differences are due to global variability in retinal thickness, whereas the variation in thickness observed between the races appears to be driven by differences in foveal pit morphology. These differences have important implications for the use of SD-OCT in detecting and diagnosing retinal disease.


Investigative Ophthalmology & Visual Science | 2014

IN VIVO IMAGING OF HUMAN CONE PHOTORECEPTOR INNER SEGMENTS

Drew Scoles; Yusufu N. Sulai; Gerald A. Fishman; Christine A. Curcio; Joseph Carroll; Alfredo Dubra

PURPOSE An often overlooked prerequisite to cone photoreceptor gene therapy development is residual photoreceptor structure that can be rescued. While advances in adaptive optics (AO) retinal imaging have recently enabled direct visualization of individual cone and rod photoreceptors in the living human retina, these techniques largely detect strongly directionally-backscattered (waveguided) light from normal intact photoreceptors. This represents a major limitation in using existing AO imaging to quantify structure of remnant cones in degenerating retina. METHODS Photoreceptor inner segment structure was assessed with a novel AO scanning light ophthalmoscopy (AOSLO) differential phase technique, that we termed nonconfocal split-detector, in two healthy subjects and four subjects with achromatopsia. Ex vivo preparations of five healthy donor eyes were analyzed for comparison of inner segment diameter to that measured in vivo with split-detector AOSLO. RESULTS Nonconfocal split-detector AOSLO reveals the photoreceptor inner segment with or without the presence of a waveguiding outer segment. The diameter of inner segments measured in vivo is in good agreement with histology. A substantial number of foveal and parafoveal cone photoreceptors with apparently intact inner segments were identified in patients with the inherited disease achromatopsia. CONCLUSIONS The application of nonconfocal split-detector to emerging human gene therapy trials will improve the potential of therapeutic success, by identifying patients with sufficient retained photoreceptor structure to benefit the most from intervention. Additionally, split-detector imaging may be useful for studies of other retinal degenerations such as AMD, retinitis pigmentosa, and choroideremia where the outer segment is lost before the remainder of the photoreceptor cell.


Biomedical Optics Express | 2013

In vivo dark-field imaging of the retinal pigment epithelium cell mosaic.

Drew Scoles; Yusufu N. Sulai; Alfredo Dubra

Non-invasive reflectance imaging of the human RPE cell mosaic is demonstrated using a modified confocal adaptive optics scanning light ophthalmoscope (AOSLO). The confocal circular aperture in front of the imaging detector was replaced with a combination of a circular aperture 4 to 16 Airy disks in diameter and an opaque filament, 1 or 3 Airy disks thick. This arrangement reveals the RPE cell mosaic by dramatically attenuating the light backscattered by the photoreceptors. The RPE cell mosaic was visualized in all 7 recruited subjects at multiple retinal locations with varying degrees of contrast and cross-talk from the photoreceptors. Various experimental settings were explored for improving the visualization of the RPE cell boundaries including: pinhole diameter, filament thickness, illumination and imaging pupil apodization, unmatched imaging and illumination focus, wavelength and polarization. None of these offered an obvious path for enhancing image contrast. The demonstrated implementation of dark-field AOSLO imaging using 790 nm light requires low light exposures relative to light safety standards and it is more comfortable for the subject than the traditional autofluorescence RPE imaging with visible light. Both these factors make RPE dark-field imaging appealing for studying mechanisms of eye disease, as well as a clinical tool for screening and monitoring disease progression.


Biomedical Optics Express | 2013

In vivo imaging of human retinal microvasculature using adaptive optics scanning light ophthalmoscope fluorescein angiography

Alexander Pinhas; Michael Dubow; Nishit Shah; Toco Yuen Ping Chui; Drew Scoles; Yusufu N. Sulai; Rishard Weitz; Joseph B. Walsh; Joseph Carroll; Alfredo Dubra; Richard B. Rosen

The adaptive optics scanning light ophthalmoscope (AOSLO) allows visualization of microscopic structures of the human retina in vivo. In this work, we demonstrate its application in combination with oral and intravenous (IV) fluorescein angiography (FA) to the in vivo visualization of the human retinal microvasculature. Ten healthy subjects ages 20 to 38 years were imaged using oral (7 and/or 20 mg/kg) and/or IV (500 mg) fluorescein. In agreement with current literature, there were no adverse effects among the patients receiving oral fluorescein while one patient receiving IV fluorescein experienced some nausea and heaving. We determined that all retinal capillary beds can be imaged using clinically accepted fluorescein dosages and safe light levels according to the ANSI Z136.1-2000 maximum permissible exposure. As expected, the 20 mg/kg oral dose showed higher image intensity for a longer period of time than did the 7 mg/kg oral and the 500 mg IV doses. The increased resolution of AOSLO FA, compared to conventional FA, offers great opportunity for studying physiological and pathological vascular processes.


Investigative Ophthalmology & Visual Science | 2014

Assessment of Perfused Foveal Microvascular Density and Identification of Nonperfused Capillaries in Healthy and Vasculopathic Eyes

Alexander Pinhas; Moataz M Razeen; Michael Dubow; Alexander Gan; Toco Yuen Ping Chui; Nishit Shah; Mitul Mehta; Ronald Gentile; Rishard Weitz; Joseph B. Walsh; Yusufu N. Sulai; Joseph Carroll; Alfredo Dubra; Richard B. Rosen

PURPOSE To analyze the foveal microvasculature of young healthy eyes and older vasculopathic eyes, imaged using in vivo adaptive optics scanning light ophthalmoscope fluorescein angiography (AOSLO FA). METHODS AOSLO FA imaging of the superficial retinal microvasculature within an 800-μm radius from the foveal center was performed using simultaneous confocal infrared (IR) reflectance (790 nm) and fluorescence (488 nm) channels. Corresponding IR structural and FA perfusion maps were compared with each other to identify nonperfused capillaries adjacent to the foveal avascular zone. Microvascular densities were calculated from skeletonized FA perfusion maps. RESULTS Sixteen healthy adults (26 eyes; mean age 25 years, range, 21-29) and six patients with a retinal vasculopathy (six eyes; mean age 55 years, range, 44-70) were imaged. At least one nonperfused capillary was observed in five of the 16 healthy nonfellow eyes and in four of the six vasculopathic eyes. Compared with healthy eyes, capillary nonperfusion in the vasculopathic eyes was more extensive. Microvascular density of the 16 healthy nonfellow eyes was 42.0 ± 4.2 mm(-1) (range, 33-50 mm(-1)). All six vasculopathic eyes had decreased microvascular densities. CONCLUSIONS AOSLO FA provides an in vivo method for estimating foveal microvascular density and reveals occult nonperfused retinal capillaries. Nonperfused capillaries in healthy young adults may represent a normal variation and/or an early sign of pathology. Although limited, the normative data presented here is a step toward developing clinically useful microvascular parameters for ocular and/or systemic diseases.


Investigative Ophthalmology & Visual Science | 2014

Classification of Human Retinal Microaneurysms Using Adaptive Optics Scanning Light Ophthalmoscope Fluorescein Angiography

Michael Dubow; Alexander Pinhas; Nishit Shah; Robert F. Cooper; Alexander Gan; Ronald Gentile; Vernon Hendrix; Yusufu N. Sulai; Joseph Carroll; Toco Yuen Ping Chui; Joseph B. Walsh; Rishard Weitz; Alfredo Dubra; Richard B. Rosen

PURPOSE Microaneurysms (MAs) are considered a hallmark of retinal vascular disease, yet what little is known about them is mostly based upon histology, not clinical observation. Here, we use the recently developed adaptive optics scanning light ophthalmoscope (AOSLO) fluorescein angiography (FA) to image human MAs in vivo and to expand on previously described MA morphologic classification schemes. METHODS Patients with vascular retinopathies (diabetic, hypertensive, and branch and central retinal vein occlusion) were imaged with reflectance AOSLO and AOSLO FA. Ninety-three MAs, from 14 eyes, were imaged and classified according to appearance into six morphologic groups: focal bulge, saccular, fusiform, mixed, pedunculated, and irregular. The MA perimeter, area, and feret maximum and minimum were correlated to morphology and retinal pathology. Select MAs were imaged longitudinally in two eyes. RESULTS Adaptive optics scanning light ophthalmoscope fluorescein angiography imaging revealed microscopic features of MAs not appreciated on conventional images. Saccular MAs were most prevalent (47%). No association was found between the type of retinal pathology and MA morphology (P = 0.44). Pedunculated and irregular MAs were among the largest MAs with average areas of 4188 and 4116 μm(2), respectively. Focal hypofluorescent regions were noted in 30% of MAs and were more likely to be associated with larger MAs (3086 vs. 1448 μm(2), P = 0.0001). CONCLUSIONS Retinal MAs can be classified in vivo into six different morphologic types, according to the geometry of their two-dimensional (2D) en face view. Adaptive optics scanning light ophthalmoscope fluorescein angiography imaging of MAs offers the possibility of studying microvascular change on a histologic scale, which may help our understanding of disease progression and treatment response.


Journal of The Optical Society of America A-optics Image Science and Vision | 2014

Visualization of retinal vascular structure and perfusion with a nonconfocal adaptive optics scanning light ophthalmoscope.

Yusufu N. Sulai; Drew Scoles; Zachary Harvey; Alfredo Dubra

Imaging of the retinal vascular structure and perfusion was explored by confocal illumination and nonconfocal detection in an adaptive optics scanning light ophthalmoscope (AOSLO), as an extension of the work by Chui et al. [Biomed. Opt. Express 3, 2537 (2012)]. Five different detection schemes were evaluated at multiple retinal locations: circular mask, annular mask, circular mask with filament, knife-edge, and split-detector. Given the superior image contrast in the reflectance and perfusion maps, the split-detection method was further tested using pupil apodization, polarized detection, and four different wavelengths. None of these variations provided noticeable contrast improvement. The noninvasive visualization of capillary flow and structure provided by AOSLO split-detection shows great promise for studying ocular and systemic conditions that affect the retinal vasculature.


Biomedical Optics Express | 2014

Comparison of adaptive optics scanning light ophthalmoscopic fluorescein angiography and offset pinhole imaging

Toco Yuen Ping Chui; Michael Dubow; Alexander Pinhas; Nishit Shah; Alexander Gan; Rishard Weitz; Yusufu N. Sulai; Alfredo Dubra; Richard B. Rosen

Recent advances to the adaptive optics scanning light ophthalmoscope (AOSLO) have enabled finer in vivo assessment of the human retinal microvasculature. AOSLO confocal reflectance imaging has been coupled with oral fluorescein angiography (FA), enabling simultaneous acquisition of structural and perfusion images. AOSLO offset pinhole (OP) imaging combined with motion contrast post-processing techniques, are able to create a similar set of structural and perfusion images without the use of exogenous contrast agent. In this study, we evaluate the similarities and differences of the structural and perfusion images obtained by either method, in healthy control subjects and in patients with retinal vasculopathy including hypertensive retinopathy, diabetic retinopathy, and retinal vein occlusion. Our results show that AOSLO OP motion contrast provides perfusion maps comparable to those obtained with AOSLO FA, while AOSLO OP reflectance images provide additional information such as vessel wall fine structure not as readily visible in AOSLO confocal reflectance images. AOSLO OP offers a non-invasive alternative to AOSLO FA without the need for any exogenous contrast agent.

Collaboration


Dive into the Yusufu N. Sulai's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joseph Carroll

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Richard B. Rosen

New York Eye and Ear Infirmary

View shared research outputs
Top Co-Authors

Avatar

Alexander Pinhas

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Drew Scoles

University of Rochester

View shared research outputs
Top Co-Authors

Avatar

Michael Dubow

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Nishit Shah

New York Eye and Ear Infirmary

View shared research outputs
Top Co-Authors

Avatar

Robert F. Cooper

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Toco Yuen Ping Chui

New York Eye and Ear Infirmary

View shared research outputs
Top Co-Authors

Avatar

Rishard Weitz

New York Eye and Ear Infirmary

View shared research outputs
Researchain Logo
Decentralizing Knowledge