Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yusuke Abe is active.

Publication


Featured researches published by Yusuke Abe.


Artificial Organs | 2011

Results of Animal Experiments With the Fourth Model of the Undulation Pump Total Artificial Heart

Yusuke Abe; Takashi Isoyama; Itsuro Saito; Wei Shi; Yusuke Inoue; Kohei Ishii; Hidemoto Nakagawa; Toshiya Ono; Minoru Ono; Kou Imachi

Animal experiments using a total artificial heart in a goat are not easy to perform. The fourth model of the undulation pump total artificial heart (UPTAH4), which was designed to perform a long-term physiological experiment including pulsatile and nonpulsatile TAH operations with a conductance- and arterial pressure-based control method named 1/R control, was implanted in 31 goats weighing 38.5 to 60.4 kg (average of 46.8 kg). The 1/R control is a physiological flow control method of TAH developed with a conductance (1/R: reciprocal of a resistance) parallel circuit model. The survival periods were from 0.1 to 153 days (average of 14.5 days). The causes of termination were postoperative bleeding in eight goats, respiratory failure in five goats, device failure in 14 goats, dissected aneurysm in two goats, and thrombus in one goat. The thrombus case was the longest surviving goat. The respiratory failure tended to occur when the extracorporeal circulation time was prolonged. Autotransfusion was effective for the prolongation of survival time. The left-right balance control and the suction control were performed successfully in all goats. The 1/R control was performed for a long time in five goats that survived for more than 1 month. With three goats that survived for 48, 52, and 53 days mainly with the pulsatile mode, the 1/R control was stable. With a goat that survived for 73 days, the nonpulsatile mode with the 1/R control could be tested for 3 weeks. With the longest surviving goat that was maintained mainly with the pulsatile mode, the 1/R control was unstable, possibly due to the mismatching of the response time of the control system between the computer and the body. However, liver and kidney functions were almost normal, and the total protein level recovered. Further study to stabilize the 1/R control in the UPTAH is necessary.


Journal of Artificial Organs | 2012

The helical flow pump with a hydrodynamic levitation impeller

Yusuke Abe; Kohei Ishii; Takashi Isoyama; Itsuro Saito; Yusuke Inoue; Toshiya Ono; Hidemoto Nakagawa; Emiko Nakano; Kyoko Fukazawa; Kazuhiko Ishihara; Kazuyoshi Fukunaga; Minoru Ono; Kou Imachi

The helical flow pump (HFP) is a novel rotary blood pump invented for developing a total artificial heart (TAH). The HFP with a hydrodynamic levitation impeller, which consists of a multi-vane impeller involving rotor magnets, stator coils at the core position, and double helical-volute pump housing, was developed. Between the stator and impeller, a hydrodynamic bearing is formed. Since the helical volutes are formed at both sides of the impeller, blood flows with a helical flow pattern inside the pump. The developed HFP showed maximum output of 19xa0l/min against 100xa0mmHg of pressure head and 11xa0% maximum efficiency. The profile of the H–Q (pressure head vs. flow) curve was similar to that of the undulation pump. Hydrodynamic levitation of the impeller was possible with higher than 1,000xa0rpm rotation speed. The normalized index of the hemolysis ratio of the HFP to centrifugal pump (BPX-80) was from 2.61 to 8.07 depending on the design of the bearing. The HFP was implanted in two goats with a left ventricular bypass method. After surgery, hemolysis occurred in both goats. The hemolysis ceased on postoperative daysxa014 and 9, respectively. In the first experiment, no thrombus was found in the pump after 203xa0days of pumping. In the second experiment, a white thrombus was found in the pump after 23xa0days of pumping. While further research and development are necessary, we are expecting to develop an excellent TAH with the HFP.


Artificial Organs | 2015

Animal Experiments of the Helical Flow Total Artificial Heart

Yusuke Abe; Takashi Isoyama; Itsuro Saito; Yusuke Inoue; Kohei Ishii; Masami Sato; Shintaro Hara; Terumi Yurimoto; Xinyang Li; Haruka Murakami; Koki Ariyoshi; Yukino Kawase; Toshiya Ono; Kyoko Fukazawa; Kazuhiko Ishihara

Severe cardiac failure patients require a total artificial heart (TAH) to save life. To realize a TAH that can fit a body of small stature and has high performance, high durability, good anatomical fitting, good blood compatibility, and physiological control, we have been developing the helical flow TAH (HFTAH) with two helical flow pumps with hydrodynamic levitation impeller. Animal experiments of the HFTAH were conducted to perform in vivo studies. The HFTAH was implanted in 13 adult female goats weighing 45.0-64.0u2009kg. After surgery, neither anti-coagulant nor anti-platelet medication was given systemically. The HFTAH was usually driven with a quasi-pulsatile mode. The 1/R control or ΔP control was applied to control the circulation. The ΔP control is a new method using simplified equation of the 1/R control. The HFTAH could be implanted in all goats with good anatomical fitting. Two goats survived for a long time (100 and 68 days). Major causes of termination were device failure and surgical complications. In the device failure, trouble with hydrodynamic bearing was conspicuous. In the two long-term survived goats, experiments were terminated with bearing instability that was probably caused by the suction effect. In these goats, hemolysis occurred on postoperative day 88 and 44, which was considered to be relevant to the bearing trouble. Thrombus was found at the broken right bearing of the 100-day survived goat. However, antithrombogenicity of the pump is expected to be good unless bearing trouble occurs. In two long-term survived goats, the 1/R control or ΔP control worked appropriately to prevent the elevation of right atrial pressure. In both goats, hemodynamic parameters changed with the condition of the animals, liver and kidney functions remained almost normal except when recovering from surgery and during hemolysis, and total protein recovered 2 weeks after surgery. Although instability of the hydrodynamic bearing should be improved, performance of the HFTAH with physiological control could be demonstrated.


international conference of the ieee engineering in medicine and biology society | 2013

The helical flow total artificial heart: Implantation in goats

Yusuke Abe; Kohei Ishii; Takashi Isoyama; Itsuro Saito; Yusuke Inoue; Masami Sato; Shintaro Hara; Kyohei Hosoda; Koki Ariyoshi; Hidemoto Nakagawa; Toshiya Ono; Kyoko Fukazawa; Kazuhiko Ishihara; Kou Imachi

To realize a total artificial heart (TAH) with high performance, high durability, good anatomical fitting, and good blood compatibility, the helical flow TAH (HFTAH) has been developed with two helical flow pumps having hydrodynamic levitation impeller. The HFTAH was implanted in goats to investigate its anatomical fitting, blood compatibility, mechanical stability, control stability, and so on. The size of the HFTAH was designed to be 80 mm in diameter and 84 mm wide. The maximum output was 19 L/min against 100 mmHg of pressure head. Eight adult female goats weighting from 45 to 56.3 kg (average 49.7 kg) were used. Under the extracorporeal circulation, natural heart was removed at the atrioventricular groove and the HFTAH was implanted. The HFTAH was driven with a pulsatile mode. The 1/R control was applied when the right atrial pressure recovered. The HFTAH could be implanted with good anatomical fitting in all goats. Two goats survived for more than a week. One goat is ongoing. Other goats did not survive for more than two days with various reasons. In the goats that survived for more than a week, the hydrodynamic bearing was worn and broken, which indicated that the bearing touched to the shaft. The cause was supposed to be the influence of the sucking effect. The potential of the HFTAH could be demonstrated with this study. The stability of the hydrodynamic bearing in a living body, especially the influence of the sucking effect, was considered to be very important and a further study should be necessary.


Journal of Artificial Organs | 2011

Automatic calibration of the inlet pressure sensor for the implantable continuous-flow ventricular assist device

Wei Shi; Itsuro Saito; Takashi Isoyama; Hidemoto Nakagawa; Yusuke Inoue; Toshiya Ono; Akimasa Kouno; Kou Imachi; Yusuke Abe

Significant progress in the development of implantable ventricular assist devices using continuous-flow blood pumps has been made recently. However, a control method has not been established. The blood pressure in the inflow cannula (inlet pressure) is one of the candidates for performing an adequate control. This could also provide important information about ventricle sucking. However, no calibration method for an inlet pressure sensor exists. In this study, an automatic calibration algorithm of the inlet pressure sensor from the pressure waveform at the condition of ventricle sucking was proposed. The calibration algorithm was constructed based on the consideration that intrathoracic pressure could be substituted for atmospheric pressure because the lung is open to air. We assumed that the inlet pressure at the releasing point of the sucking would represent the intrathoracic pressure, because the atrial pressure would be low owing to the sucking condition. A special mock circulation system that can reproduce ventricle sucking was developed to validate the calibration algorithm. The calibration algorithm worked well with a maximum SD of 2.1xa0mmHg for 3-min measurement in the mock circulation system. While the deviation was slightly large for an elaborate calibration, it would still be useful as a primitive calibration. The influence of the respiratory change and other factors as well as the reliability of the calibration value should be investigated with an animal experiment as a next step.


international conference of the ieee engineering in medicine and biology society | 2010

Preliminary study of physiological control for the undulation pump ventricular assist device

Itsuro Saito; Kohei Ishii; Takashi Isoyama; Toshiya Ono; Hidemoto Nakagawa; Wei Shi; Yusuke Inoue; Yusuke Abe

The undulation pump ventricular assist device (UPVAD) is a small implantable ventricular assist device using an undulation pump. The UPVAD can produce pulsatile flow by changing the motor rotation speed of the UPVAD. Because the undulation pump is a volume displacement type pump, the inflow sucking occurs easily. The purpose of this study is to develop a suitable control method for the UPVAD. The UPVAD inflow cannula equipped with an implantable pressure sensor was inserted into the ventricle. Therefore, pressure variation that synchronized with the natural heartbeat and negative pressure spike caused the inflow sucking were observed. By changing the motor rotation speed that responded to the inflow pressure, the UPVAD could synchronize with the natural heartbeat and the UPVAD could generate a co-pulse assist flow. The inflow sucking could be released by reducing the motor rotation speed, if the inflow sucking was detected. The newly developed control method exhibited superior characteristics than existing ones due to high immunity against pressure sensor drift. The assist flow could be increased more than 15% and the inflow sucking occurrence could be decreased with this control method. The UPVAD could generate the suitable assist flow with the developed control method.


Artificial Organs | 2010

Use of In Vivo Insert Molding to Form a Jellyfish Valve Leaflet

Ayumi Kishi; Takashi Isoyama; Itsuro Saito; Hidekazu Miura; Hidemoto Nakagawa; Akimasa Kouno; Toshiya Ono; Yusuke Inoue; Sachiko Yamaguchi; Wei Shi; Yusuke Abe; Kou Imachi; Makoto Noshiro

We developed an in vivo insert molding technique to form tissue-derived biomaterials into the desired shape, and with sufficient strength and durability, for use in artificial organs. Molds of acrylic resin with inserted velour cloth were implanted under the skin of goats to form a circular leaflet for a jellyfish valve. The valve leaflets were successfully produced in the molds after 17-60 days. Dense connective tissue covered the velour cloth, and loose connective tissue was formed within it. Tissue was radially formed from the hole in the mold. The tissue was simultaneously formed and shrunk. It is necessary to increase the connected portion between the tissue inside and outside the mold so that the tissue can completely cover the inserted materials without shrinkage.


Journal of Artificial Organs | 2015

Hydrodynamic characteristics of the helical flow pump

Kohei Ishii; Kyohei Hosoda; Masahiro Nishida; Takashi Isoyama; Itsuro Saito; Koki Ariyoshi; Yusuke Inoue; Toshiya Ono; Hidemoto Nakagawa; Masami Sato; Sintaro Hara; Xinyang Lee; Sheng-Yuan Wu; Kou Imachi; Yusuke Abe

The helical flow pump (HFP) was invented to be an ideal pump for developing the TAH and the helical flow TAH (HFTAH) using two HFPs has been developed. However, since the HFP is quite a new pump, hydrodynamic characteristics inside the pump are not clarified. To analyze hydrodynamic characteristics of the HFP, flow visualization study using the particle image velocimetry and computational fluid dynamics analysis were performed. The experimental and computational models were developed to simulate the left HFP of the HFTAH and distributions of flow velocity vectors, shear stress and pressure inside the pump were examined. In distribution of flow velocity vectors, the vortexes in the vane were observed, which indicated that the HFP has a novel and quite unique working principle in which centrifugal force rotates the fluid in the helical volutes and the fluid is transferred from the inlet to the outlet helical volutes according to the helical structure. In distribution of shear stress, the highest shear stress that was considered to be occurred by the shunt flow across the impeller was found around the entrance of the inlet helical volute. However, it was not so high to cause hemolysis. This shunt flow is thought to be improved by redesigning the inlet and outlet helical volutes. In distribution of pressure, negative pressure was found near the entrance of the inlet helical volute. However, it was not high. Negative pressure is thought to be reduced with an improvement in the design of the impeller or the vane shape.


Journal of Artificial Organs | 2014

Concept of left atrial pressure estimation using its pulsatile amplitude in the helical flow total artificial heart.

Sheng-Yuan Wu; Itsuro Saito; Takashi Isoyama; Yusuke Inoue; Masami Sato; Shintaro Hara; Xinyang Li; Terumi Yurimoto; Haruka Murakami; Yukino Kawase; Toshiya Ono; Yusuke Abe

The total artificial heart (TAH) requires physiological control to respond to the metabolic demand of the body. To date, 1/R control is a single physiological control method that can control venous pressure. To realize an implantable 1/R control system, we are developing a new pressure measuring method using absolute pressure sensor. To find a method for absolute pressure sensor, which went well without calibration, concept of left atrial pressure (LAP) estimation using its pulsatile amplitude was proposed. Its possibility was investigated with two long-term survived goats whose hearts were replaced with the helical flow TAHs. In manual control condition, there existed a positive relation between mean LAP (mLAP) and normalized pulsatile amplitude (NPA). Percent systole revealed not to affect the relationship between mLAP and NPA. Dispersion was observed between different pulse rates. As for cardiac output difference (QLD) that is the difference of flow rate between systolic and diastolic phases, similar results were obtained except in low QLDs. In the 1/R control condition, relatively high correlation between mLAP and NPA could be obtained. In estimation of mLAP using the correlating function of individual goat, fairly good correlation was obtained between measured mLAP and estimated mLAP. Despite that further studies are necessary, it was demonstrated that the concept of the LAP estimation could be possible.


Journal of Artificial Organs | 2014

Computational fluid dynamics analysis of the pump parameters in the helical flow pump

Kyohei Hosoda; Kohei Ishii; Takashi Isoyama; Itsuro Saito; Yusuke Inoue; Kouki Ariyoshi; Toshiya Ono; Hidemoto Nakagawa; Kou Imachi; Hiroshi Kumagai; Yusuke Abe

The helical flow pump (HFP) was invented to develop a total artificial heart at the University of Tokyo in 2005. The HFP consists of the multi-vane impeller involving rotor magnets, a motor stator and pump housing having double-helical volutes. To investigate the characteristics of the HFP, computational fluid dynamics analysis was performed. Validation of the computational model was performed with the data of the actual pump. A control computational model in which the vane area corresponded approximately to that of the actual pump was designed for the parametric study. The parametric study was performed varying the vane height, vane width and helical volute pitch. When the vane height was varied from 0.5 to 1.5 times that of the control computational model, the H–Q (pressure head vs. flow) and efficiency curves were translated in parallel with the vane height. When the vane height was two and three times that of the control computational model, the profile of these curves changed. From the results, the best proportion for the vane was considered to be a vane height between 1.5 and 2 times the vane width. The effect of vane width was not very strong compared to that of the vane height. A similar tendency in vane height was observed by varying the helical volute pitch. The best helical volute-pitch size is considered to be between 1.5 and 2 times the vane width. Although further study is necessary to determine the best values for these parameters, the characteristics of the pump parameters in the HFP could be approximately clarified.

Collaboration


Dive into the Yusuke Abe's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge