Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yusuke Ohsaki is active.

Publication


Featured researches published by Yusuke Ohsaki.


Toxicology and Applied Pharmacology | 2008

Low-dose dioxins alter gene expression related to cholesterol biosynthesis, lipogenesis, and glucose metabolism through the aryl hydrocarbon receptor-mediated pathway in mouse liver

Shoko Sato; Hitoshi Shirakawa; Shuhei Tomita; Yusuke Ohsaki; Keiichi Haketa; Osamu Tooi; Noriaki Santo; Masahiro Tohkin; Yuji Furukawa; Frank J. Gonzalez; Michio Komai

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a common environmental contaminant. TCDD binds and activates the transcription factor aryl hydrocarbon receptor (AHR), leading to adverse biological responses via the alteration of the expression of various AHR target genes. Although small amounts of TCDD are consumed via contaminated daily foodstuffs and environmental exposures, the effects of low-dose TCDD on gene expression in animal tissues have not been clarified, while a number of genes affected by high-dose TCDD were reported. In this study, we comprehensively analyzed gene expression profiles in livers of C57BL/6N mice that were orally administered relatively low doses of TCDD (5, 50, or 500 ng/kg body weight (bw) day(-1)) for 18 days. The hepatic TCDD concentrations, measured by gas chromatography-mass spectrometry, were 1.2, 17, and 1063 pg toxicity equivalent quantity (TEQ)/g, respectively. The mRNA level of the cytochrome P450 CYP1A1 was significantly increased by treatment with only TCDD 500 ng/kg bw day(-1). DNA microarray and quantitative RT-PCR analyses revealed changes in the expression of genes involved in the circadian rhythm, cholesterol biosynthesis, fatty acid synthesis, and glucose metabolism in the liver with at all doses of TCDD employed. However, repression of expression of genes involved in energy metabolism was not observed in the livers of Ahr-null mice that were administered the same dose of TCDD. These results indicate that changes in gene expression by TCDD are mediated by AHR and that exposure to low-dose TCDD could affect energy metabolism via alterations of gene expression.


Bioscience, Biotechnology, and Biochemistry | 2006

Vitamin K Suppresses Lipopolysaccharide-Induced Inflammation in the Rat

Yusuke Ohsaki; Hitoshi Shirakawa; Kazuyuki Hiwatashi; Yuji Furukawa; Takeo Mizutani; Michio Komai

Vitamin K (K) is essential for blood coagulation and bone metabolism in mammals. K acts as a cofactor in the posttranslational synthesis of γ-carboxyglutamic acid from glutamic acid residues. In addition to the liver and bone, K is found in the brain, heart, kidney and gonadal tissue. However, the physiological role of K in these various organs is not yet fully understood. It is likely that K has functions other than its role as a cofactor of protein γ-glutamyl carboxylation. We used in this study the DNA microarray technique to identify the effect of K status on gene expression in the rat liver. The expression of genes involved in the acute inflammation response was enhanced in rats fed with a K-deficient diet relative to the control and K1-supplemented diet groups. Moreover, dietary supplementation with K1 suppressed the inflammation induced by lipopolysaccharide administration. These results indicate that orally administrated K1 suppressed inflammation in the rat.


Journal of Agricultural and Food Chemistry | 2008

Novel Effects of a Single Administration of Ferulic Acid on the Regulation of Blood Pressure and the Hepatic Lipid Metabolic Profile in Stroke-Prone Spontaneously Hypertensive Rats

Ardiansyah; Yusuke Ohsaki; Hitoshi Shirakawa; Takuya Koseki; Michio Komai

We studied the effects of a single oral administration of ferulic acid (FA) on the blood pressure (BP) and lipid profile in stroke-prone spontaneously hypertensive rats (SHRSP). Male 12-week-old SHRSP were administered FA (9.5 mg/kg of body weight) and distilled water as the control (C) (1 mL) via a gastric tube. The hypotensive effect of FA was observed at the lowest value after 2 h administration. A decrease in the angiotensin-1-converting enzyme (ACE) activity in the plasma corresponded well with the reduction of BP. Plasma total cholesterol and triglyceride levels were lower after 2 h administration. The mRNA expression of genes involved in lipid and drug metabolism was downregulated in the FA group. These results suggest that oral administration of FA appears beneficial in improving hypertension and hyperlipidemia.


Journal of The American Society of Nephrology | 2008

High Perfusion Pressure Accelerates Renal Injury in Salt-Sensitive Hypertension

Takefumi Mori; Aaron J. Polichnowski; Padden Glocka; Mary L. Kaldunski; Yusuke Ohsaki; Mingyu Liang; Allen W. Cowley

Renal injury in the Dahl salt-sensitive rat mimics human salt-sensitive forms of hypertension that are particularly prevalent in black individuals, but the mechanisms that lead to the development of this injury are incompletely understood. We studied the impact of renal perfusion pressure (RPP) on the development of renal injury in this model. During the development of salt-induced hypertension over 2 wk, the RPP to the left kidney was maintained at control levels (125 +/- 2 mmHg) by continuous servocontrol inflation of an aortic balloon implanted between the renal arteries; during the same period, the RPP to the right kidney rose to 164 +/- 8 mmHg. After 2 wk of a 4% salt diet, DNA microarray and real-time PCR identified genes related to fibrosis and epithelial-to-mesenchymal transition in the kidneys exposed to hypertension. The increased RPP to the right kidney accounted for differences in renal injury between the two kidneys, measured by percentage of injured cortical and juxtamedullary glomeruli, quantified proteinaceous casts, number of ED-1-positive cells per glomerular tuft area, and interstitial fibrosis. Interlobular arteriolar injury was not increased in the kidney exposed to elevated pressure but was reduced in the control kidney. We conclude that elevations of RPP contribute significantly to the fibrosis and epithelial-to-mesenchymal transition found in the early phases of hypertension in the salt-sensitive rat.


Journal of Nutritional Biochemistry | 2010

Vitamin K suppresses the lipopolysaccharide-induced expression of inflammatory cytokines in cultured macrophage-like cells via the inhibition of the activation of nuclear factor κB through the repression of IKKα/β phosphorylation

Yusuke Ohsaki; Hitoshi Shirakawa; Akihito Miura; Puspo Edi Giriwono; Shoko Sato; Ai Ohashi; Maiko Iribe; Tomoko Goto; Michio Komai

Vitamin K is essential for blood coagulation and bone metabolism in mammals. This vitamin functions as a cofactor in the posttranslational synthesis of γ-carboxyglutamic acid (Gla) from glutamic acid residues. However, other functions of vitamin K have been reported recently. We previously found that vitamin K suppresses the inflammatory reaction induced by lipopolysaccharide (LPS) in rats and human macrophage-like THP-1 cells. In this study, we further investigated the mechanism underlying the anti-inflammatory effect of vitamin K by using cultures of LPS-treated human- and mouse-derived cells. All the vitamin K analogues analyzed in our study exhibited varied levels of anti-inflammatory activity. The isoprenyl side chain structures, except geranylgeraniol, of these analogues did not show such activity; warfarin did not interfere with this activity. The results of our study suggest that the 2-methyl-1,4-naphtoquinone ring structure contributes to express the anti-inflammatory activity, which is independent of the Gla formation activity of vitamin K. Furthermore, menaquinone-4, a form of vitamin K₂, reduced the activation of nuclear factor κB (NFκB) and inhibited the phosphorylation of IKKα/β after treatment of cells with LPS. These results clearly show that the anti-inflammatory activity of vitamin K is mediated via the inactivation of the NFκB signaling pathway.


American Journal of Physiology-renal Physiology | 2015

Reactive oxygen species as important determinants of medullary flow, sodium excretion, and hypertension.

Allen W. Cowley; Michiaki Abe; Takefumi Mori; Paul M. O'Connor; Yusuke Ohsaki; Nadezhda N. Zheleznova

The physiological evidence linking the production of superoxide, hydrogen peroxide, and nitric oxide in the renal medullary thick ascending limb of Henle (mTAL) to regulation of medullary blood flow, sodium homeostasis, and long-term control of blood pressure is summarized in this review. Data obtained largely from rats indicate that experimentally induced elevations of either superoxide or hydrogen peroxide in the renal medulla result in reduction of medullary blood flow, enhanced Na(+) reabsorption, and hypertension. A shift in the redox balance between nitric oxide and reactive oxygen species (ROS) is found to occur naturally in the Dahl salt-sensitive (SS) rat model, where selective reduction of ROS production in the renal medulla reduces salt-induced hypertension. Excess medullary production of ROS in SS rats emanates from the medullary thick ascending limbs of Henle [from both the mitochondria and membrane NAD(P)H oxidases] in response to increased delivery and reabsorption of excess sodium and water. There is evidence that ROS and perhaps other mediators such as ATP diffuse from the mTAL to surrounding vasa recta capillaries, resulting in medullary ischemia, which thereby contributes to hypertension.


American Journal of Physiology-renal Physiology | 2012

Increase of sodium delivery stimulates the mitochondrial respiratory chain H2O2 production in rat renal medullary thick ascending limb

Yusuke Ohsaki; Paul M. O'Connor; Takefumi Mori; Robert P. Ryan; Bryan C. Dickinson; Christopher J. Chang; Yi Lu; Sadayoshi Ito; Allen W. Cowley

The mitochondria-rich epithelial cells of the renal medullary thick ascending limb (mTAL) reabsorb nearly 25% of filtered sodium (Na(+)) and are a major source of cellular reactive oxygen species. Although we have shown that delivery of Na(+) to the mTAL of rats increases superoxide (O(2)(·-)) production in mTAL, little is known about H(2)O(2) production, given the lack of robust and selective fluorescent indicators for determining changes within the whole cell, specifically in the mitochondria. The present study determined the effect of increased tubular flow and Na(+) delivery to mTAL on the production of mitochondrial H(2)O(2) in mTAL. H(2)O(2) responses were determined in isolated, perfused mTAL of Sprague-Dawley rats using a novel mitochondrial selective fluorescent H(2)O(2) indicator, mitochondria peroxy yellow 1, and a novel, highly sensitive and stable cytosolic-localized H(2)O(2) indicator, peroxyfluor-6 acetoxymethyl ester. The results showed that mitochondrial H(2)O(2) and cellular fluorescent signals increased progressively over a period of 30 min following increased tubular perfusion (5-20 nl/min), reaching levels of statistical significance at ∼10-12 min. Responses were inhibited with rotenone or antimycin A (inhibitors of the electron-transport chain), polyethylene glycol-catalase and by reducing Na(+) transport with furosemide or ouabain. Inhibition of membrane NADPH-oxidase with apocynin had no effect on mitochondrial H(2)O(2) production. Cytoplasmic H(2)O(2) (peroxyfluor-6 acetoxymethyl ester) increased in parallel with mitochondrial H(2)O(2) (mitochondria peroxy yellow 1) and was partially attenuated (∼65%) by rotenone and completely inhibited by apocynin. The present data provide clear evidence that H(2)O(2) is produced in the mitochondria in response to increased flow and delivery of Na(+) to the mTAL, and that whole cell H(2)O(2) levels are triggered by the mitochondrial reactive oxygen species production. The mitochondrial production of H(2)O(2) may represent an important target for development of more effective antioxidant therapies.


Hypertension Research | 2013

Carbonyl stress induces hypertension and cardio-renal vascular injury in Dahl salt-sensitive rats.

Xianguang Chen; Takefumi Mori; Qi Guo; Chunyan Hu; Yusuke Ohsaki; Yoshimi Yoneki; Wan-Jun Zhu; Yue Jiang; Satoshi Endo; Keisuke Nakayama; Susumu Ogawa; Masaaki Nakayama; Toshio Miyata; Sadayoshi Ito

One major precursor of carbonyl stress, methylglyoxal (MG), is elevated in the plasma of chronic kidney disease (CKD) patients, and this precursor contributes to the progression of vascular injury, hypertension and renal injury in diabetic nephropathy patients. This molecule induces salt-sensitive hypertension via a reactive oxygen species-mediated pathway. We examined the role of MG in the pathogenesis of hypertension and cardio–renal injury in Dahl salt-sensitive (Dahl S) rats, which is a rat model of CKD. Nine-week-old Dahl S rats were fed a 1% NaCl diet, and 1% MG was added to their drinking water for up to 12 weeks. Blood pressure and cardio–renal injuries were compared with rats treated with tap water alone. The angiotensin II receptor blocker (ARB), candesartan (10 mg kg−1 day−1), was administered to MG Dahl S rats to determine the impact of this drug on the pathogenesis of MG-induced CKD. A progressive increase in systolic blood pressure was observed (123±1–148±5 mm Hg) after 12 weeks of MG administration. MG administration significantly increased urinary albumin excretion, glomerular sclerosis, tubular injury, myocardial collagen content and cardiac perivascular fibrosis. MG also enhanced the renal expression of Nɛ-carboxyethyl-lysine (an advanced glycation end product), 8-hydroxydeoxyguanosine (a marker of oxidative stress), macrophage (ED-1) positive cells (a marker of inflammation) and nicotinamide adenine dinucleotide phosphate (NAD(P)H) oxidase activity. Candesartan treatment for 4 weeks significantly reduced these parameters. These results suggest that MG-induced hypertension and cardio–renal injury and increased inflammation and carbonyl and oxidative stress, which were partially preventable by an ARB.


Hypertension Research | 2012

Losartan modulates muscular capillary density and reverses thiazide diuretic-exacerbated insulin resistance in fructose-fed rats

Qi Guo; Takefumi Mori; Yue Jiang; Chunyan Hu; Yusuke Ohsaki; Yoshimi Yoneki; Takashi Nakamichi; Susumu Ogawa; Hiroshi Sato; Sadayoshi Ito

The renin–angiotensin system (RAS) is involved in the pathogenesis of insulin sensitivity (IS). The role of RAS in insulin resistance and muscular circulation has yet to be elucidated. Therefore, this study sought to determine the mechanisms of angiotensin II receptor blockers (ARBs) and/or diuretics on IS and capillary density (CD) in fructose-fed rats (FFRs). Sprague-Dawley rats were fed either normal chow (control group) or fructose-rich chow for 8 weeks. For the last 4 weeks, FFRs were allocated to four groups: an FFR group and groups treated with the thiazide diuretic hydrochlorothiazide (HCTZ), with the ARB losartan, or both. IS was evaluated by the euglycemic hyperinsulinemic glucose clamp technique at week 8. In addition, CD in the extensor digitorum longus muscle was evaluated. Blood pressure was significantly higher in the FFRs than in the controls. HCTZ, losartan and their combination significantly lowered blood pressure. IS was significantly lower in the FFR group than in the controls and was even lower in the HCTZ group. Losartan alone or combined with HCTZ significantly increased IS. In all cases, IS was associated with muscular CD, but not with plasma adiponectin or lipids. These results indicate that losartan reverses HCTZ-exacerbated insulin resistance, which can be mediated through the modulation of muscular circulation in rats with impaired glucose metabolism.


Hepatology Research | 2017

Diuretic usage for protection against end-organ damage in liver cirrhosis and heart failure.

Takefumi Mori; Yusuke Ohsaki; Ikuko Oba-Yabana; Sadayoshi Ito

Volume overload is common in liver cirrhosis, heart failure, and chronic kidney disease, being an independent risk factor for mortality. Loop diuretics have been widely used for treating volume overload in these patients. However, there is a tendency to increase the dose of loop diuretics partly because of diuresis resistance. Neurohormonal factors are also enhanced in these patients, which play a role in volume overload and organ ischemia. Loop diuretics cannot improve neurohormonal factors and could result in end‐organ damage. The water diuretic tolvaptan has been approved for use for volume overload in heart failure and liver cirrhosis. Despite causing similar increases in urine volume, its characteristics differ from those of loop diuretics. Renal blood flow is maintained with tolvaptan but decreased with furosemide in heart failure patients. Neurohormonal factors and blood pressure are not markedly altered by tolvaptan administration. It is expected that these mechanisms of tolvaptan can protect against worsening renal function by volume overload diseases compared with loop diuretics. It has also been reported that some patients do not respond well to tolvaptan. Loop diuretics and tolvaptan share the same mechanism with regard to decreasing renal interstitial osmolality, which plays a fundamental role in water diuresis. Thus, a high dose of loop diuretics could result in resistance to tolvaptan, so tolvaptan should be administered before increasing the loop diuretic dose. Therefore, volume control without enhancing end‐organ damage can be achieved by adding tolvaptan to a tolerable dose of Na‐sparing diuretics.

Collaboration


Dive into the Yusuke Ohsaki's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Puspo Edi Giriwono

Bogor Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Allen W. Cowley

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge