Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yusuke Okuno is active.

Publication


Featured researches published by Yusuke Okuno.


Leukemia | 2014

Landscape of genetic lesions in 944 patients with myelodysplastic syndromes

Torsten Haferlach; Yasunobu Nagata; Vera Grossmann; Yusuke Okuno; Ulrike Bacher; Genta Nagae; Susanne Schnittger; Masashi Sanada; Ayana Kon; Tamara Alpermann; Kenichi Yoshida; Andreas Roller; Niroshan Nadarajah; Yuichi Shiraishi; Yusuke Shiozawa; Kenichi Chiba; Hidenori Tanaka; Koeffler Hp; H-U Klein; Martin Dugas; Hiroyuki Aburatani; Alexander Kohlmann; Satoru Miyano; Claudia Haferlach; Wolfgang Kern; Seishi Ogawa

High-throughput DNA sequencing significantly contributed to diagnosis and prognostication in patients with myelodysplastic syndromes (MDS). We determined the biological and prognostic significance of genetic aberrations in MDS. In total, 944 patients with various MDS subtypes were screened for known/putative mutations/deletions in 104 genes using targeted deep sequencing and array-based genomic hybridization. In total, 845/944 patients (89.5%) harbored at least one mutation (median, 3 per patient; range, 0–12). Forty-seven genes were significantly mutated with TET2, SF3B1, ASXL1, SRSF2, DNMT3A, and RUNX1 mutated in >10% of cases. Many mutations were associated with higher risk groups and/or blast elevation. Survival was investigated in 875 patients. By univariate analysis, 25/48 genes (resulting from 47 genes tested significantly plus PRPF8) affected survival (P<0.05). The status of 14 genes combined with conventional factors revealed a novel prognostic model (‘Model-1’) separating patients into four risk groups (‘low’, ‘intermediate’, ‘high’, ‘very high risk’) with 3-year survival of 95.2, 69.3, 32.8, and 5.3% (P<0.001). Subsequently, a ‘gene-only model’ (‘Model-2’) was constructed based on 14 genes also yielding four significant risk groups (P<0.001). Both models were reproducible in the validation cohort (n=175 patients; P<0.001 each). Thus, large-scale genetic and molecular profiling of multiple target genes is invaluable for subclassification and prognostication in MDS patients.


Nature Genetics | 2013

Integrated molecular analysis of clear-cell renal cell carcinoma

Yusuke Sato; Tetsuichi Yoshizato; Yuichi Shiraishi; Shigekatsu Maekawa; Yusuke Okuno; Takumi Kamura; Teppei Shimamura; Aiko Sato-Otsubo; Genta Nagae; Hiromichi Suzuki; Yasunobu Nagata; Kenichi Yoshida; Ayana Kon; Yutaka Suzuki; Kenichi Chiba; Hiroko Tanaka; Atsushi Niida; Akihiro Fujimoto; Tatsuhiko Tsunoda; Teppei Morikawa; Daichi Maeda; Haruki Kume; Sumio Sugano; Masashi Fukayama; Hiroyuki Aburatani; Masashi Sanada; Satoru Miyano; Yukio Homma; Seishi Ogawa

Clear-cell renal cell carcinoma (ccRCC) is the most prevalent kidney cancer and its molecular pathogenesis is incompletely understood. Here we report an integrated molecular study of ccRCC in which ≥100 ccRCC cases were fully analyzed by whole-genome and/or whole-exome and RNA sequencing as well as by array-based gene expression, copy number and/or methylation analyses. We identified a full spectrum of genetic lesions and analyzed gene expression and DNA methylation signatures and determined their impact on tumor behavior. Defective VHL-mediated proteolysis was a common feature of ccRCC, which was caused not only by VHL inactivation but also by new hotspot TCEB1 mutations, which abolished Elongin C–VHL binding, leading to HIF accumulation. Other newly identified pathways and components recurrently mutated in ccRCC included PI3K-AKT-mTOR signaling, the KEAP1-NRF2-CUL3 apparatus, DNA methylation, p53-related pathways and mRNA processing. This integrated molecular analysis unmasked new correlations between DNA methylation, gene mutation and/or gene expression and copy number profiles, enabling the stratification of clinical risks for patients with ccRCC.


Nature Genetics | 2014

Somatic RHOA mutation in angioimmunoblastic T cell lymphoma

Mamiko Sakata-Yanagimoto; Terukazu Enami; Kenichi Yoshida; Yuichi Shiraishi; Ryohei Ishii; Yasuyuki Miyake; Hideharu Muto; Naoko Tsuyama; Aiko Sato-Otsubo; Yusuke Okuno; Seiji Sakata; Yuhei Kamada; Rie Nakamoto-Matsubara; Nguyen Bich Tran; Koji Izutsu; Yusuke Sato; Yasunori Ohta; Junichi Furuta; Seiichi Shimizu; Takuya Komeno; Yuji Sato; Takayoshi Ito; Masayuki Noguchi; Masashi Sanada; Kenichi Chiba; Hiroko Tanaka; Kazumi Suzukawa; Toru Nanmoku; Yuichi Hasegawa; Osamu Nureki

Angioimmunoblastic T cell lymphoma (AITL) is a distinct subtype of peripheral T cell lymphoma characterized by generalized lymphadenopathy and frequent autoimmune-like manifestations. Although frequent mutations in TET2, IDH2 and DNMT3A, which are common to various hematologic malignancies, have been identified in AITL, the molecular pathogenesis specific to this lymphoma subtype is unknown. Here we report somatic RHOA mutations encoding a p.Gly17Val alteration in 68% of AITL samples. Remarkably, all cases with the mutation encoding p.Gly17Val also had TET2 mutations. The RHOA mutation encoding p.Gly17Val was specifically identified in tumor cells, whereas TET2 mutations were found in both tumor cells and non-tumor hematopoietic cells. RHOA encodes a small GTPase that regulates diverse biological processes. We demonstrated that the Gly17Val RHOA mutant did not bind GTP and also inhibited wild-type RHOA function. Our findings suggest that impaired RHOA function in cooperation with preceding loss of TET2 function contributes to AITL-specific pathogenesis.


Nature Genetics | 2014

Genomic and molecular characterization of esophageal squamous cell carcinoma

De-Chen Lin; Jia-Jie Hao; Yasunobu Nagata; Liang Xu; Li Shang; Xuan Meng; Yusuke Sato; Yusuke Okuno; Ana Maria Varela; Ling-Wen Ding; Manoj Garg; Li-Zhen Liu; Henry Yang; Dong Yin; Zhi-Zhou Shi; Yan-Yi Jiang; Wen-Yue Gu; Ting Gong; Yu Zhang; Xin Xu; Ori Kalid; Sharon Shacham; Seishi Ogawa; Ming-Rong Wang; H. Phillip Koeffler

Esophageal squamous cell carcinoma (ESCC) is prevalent worldwide and particularly common in certain regions of Asia. Here we report the whole-exome or targeted deep sequencing of 139 paired ESCC cases, and analysis of somatic copy number variations (SCNV) of over 180 ESCCs. We identified previously uncharacterized mutated genes such as FAT1, FAT2, ZNF750 and KMT2D, in addition to those already known (TP53, PIK3CA and NOTCH1). Further SCNV evaluation, immunohistochemistry and biological analysis suggested their functional relevance in ESCC. Notably, RTK-MAPK-PI3K pathways, cell cycle and epigenetic regulation are frequently dysregulated by multiple molecular mechanisms in this cancer. Our approaches also uncovered many druggable candidates, and XPO1 was further explored as a therapeutic target because it showed both gene mutation and protein overexpression. Our integrated study unmasks a number of novel genetic lesions in ESCC and provides an important molecular foundation for understanding esophageal tumors and developing therapeutic targets.


Nature Genetics | 2013

Recurrent mutations in multiple components of the cohesin complex in myeloid neoplasms

Ayana Kon; Lee-Yung Shih; Masashi Minamino; Masashi Sanada; Yuichi Shiraishi; Yasunobu Nagata; Kenichi Yoshida; Yusuke Okuno; Masashige Bando; Ryuichiro Nakato; Shumpei Ishikawa; Aiko Sato-Otsubo; Genta Nagae; Aiko Nishimoto; Claudia Haferlach; Daniel Nowak; Yusuke Sato; Tamara Alpermann; Masao Nagasaki; Teppei Shimamura; Hiroko Tanaka; Kenichi Chiba; Ryo Yamamoto; Tomoyuki Yamaguchi; Makoto Otsu; Naoshi Obara; Mamiko Sakata-Yanagimoto; Tsuyoshi Nakamaki; Ken Ishiyama; Florian Nolte

Cohesin is a multimeric protein complex that is involved in the cohesion of sister chromatids, post-replicative DNA repair and transcriptional regulation. Here we report recurrent mutations and deletions involving multiple components of the cohesin complex, including STAG2, RAD21, SMC1A and SMC3, in different myeloid neoplasms. These mutations and deletions were mostly mutually exclusive and occurred in 12.1% (19/157) of acute myeloid leukemia, 8.0% (18/224) of myelodysplastic syndromes, 10.2% (9/88) of chronic myelomonocytic leukemia, 6.3% (4/64) of chronic myelogenous leukemia and 1.3% (1/77) of classical myeloproliferative neoplasms. Cohesin-mutated leukemic cells showed reduced amounts of chromatin-bound cohesin components, suggesting a substantial loss of cohesin binding sites on chromatin. The growth of leukemic cell lines harboring a mutation in RAD21 (Kasumi-1 cells) or having severely reduced expression of RAD21 and STAG2 (MOLM-13 cells) was suppressed by forced expression of wild-type RAD21 and wild-type RAD21 and STAG2, respectively. These findings suggest a role for compromised cohesin functions in myeloid leukemogenesis.


The New England Journal of Medicine | 2015

Somatic Mutations and Clonal Hematopoiesis in Aplastic Anemia.

Tetsuichi Yoshizato; Bogdan Dumitriu; Kohei Hosokawa; Hideki Makishima; Kenichi Yoshida; Danielle M. Townsley; Aiko Sato-Otsubo; Yusuke Sato; Delong Liu; Hiromichi Suzuki; Colin O. Wu; Yuichi Shiraishi; Michael J. Clemente; Keisuke Kataoka; Yusuke Shiozawa; Yusuke Okuno; Kenichi Chiba; Hiroko Tanaka; Yasunobu Nagata; Takamasa Katagiri; Ayana Kon; Masashi Sanada; Phillip Scheinberg; Satoru Miyano; Jaroslaw P. Maciejewski; Shinji Nakao; Neal S. Young; Seishi Ogawa

BACKGROUND In patients with acquired aplastic anemia, destruction of hematopoietic cells by the immune system leads to pancytopenia. Patients have a response to immunosuppressive therapy, but myelodysplastic syndromes and acute myeloid leukemia develop in about 15% of the patients, usually many months to years after the diagnosis of aplastic anemia. METHODS We performed next-generation sequencing and array-based karyotyping using 668 blood samples obtained from 439 patients with aplastic anemia. We analyzed serial samples obtained from 82 patients. RESULTS Somatic mutations in myeloid cancer candidate genes were present in one third of the patients, in a limited number of genes and at low initial variant allele frequency. Clonal hematopoiesis was detected in 47% of the patients, most frequently as acquired mutations. The prevalence of the mutations increased with age, and mutations had an age-related signature. DNMT3A-mutated and ASXL1-mutated clones tended to increase in size over time; the size of BCOR- and BCORL1-mutated and PIGA-mutated clones decreased or remained stable. Mutations in PIGA and BCOR and BCORL1 correlated with a better response to immunosuppressive therapy and longer and a higher rate of overall and progression-free survival; mutations in a subgroup of genes that included DNMT3A and ASXL1 were associated with worse outcomes. However, clonal dynamics were highly variable and might not necessarily have predicted the response to therapy and long-term survival among individual patients. CONCLUSIONS Clonal hematopoiesis was prevalent in aplastic anemia. Some mutations were related to clinical outcomes. A highly biased set of mutations is evidence of Darwinian selection in the failed bone marrow environment. The pattern of somatic clones in individual patients over time was variable and frequently unpredictable. (Funded by Grant-in-Aid for Scientific Research and others.).


Nature Genetics | 2013

Somatic SETBP1 mutations in myeloid malignancies

Hideki Makishima; Kenichi Yoshida; Nhu Ngoc Thi Nguyen; Bartlomiej Przychodzen; Masashi Sanada; Yusuke Okuno; Kwok Peng Ng; Kristbjorn Orri Gudmundsson; Bandana A. Vishwakarma; Andres Jerez; Inés Gómez-Seguí; Mariko Takahashi; Yuichi Shiraishi; Yasunobu Nagata; Kathryn M Guinta; Hiraku Mori; Mikkael A. Sekeres; Kenichi Chiba; Hiroko Tanaka; Hideki Muramatsu; Hirotoshi Sakaguchi; Ronald Paquette; Michael A. McDevitt; Seiji Kojima; Yogen Saunthararajah; Satoru Miyano; Lee-Yung Shih; Yang Du; Seishi Ogawa; Jaroslaw P. Maciejewski

Here we report whole-exome sequencing of individuals with various myeloid malignancies and identify recurrent somatic mutations in SETBP1, consistent with a recent report on atypical chronic myeloid leukemia (aCML). Closely positioned somatic SETBP1 mutations encoding changes in Asp868, Ser869, Gly870, Ile871 and Asp880, which match germline mutations in Schinzel-Giedion syndrome (SGS), were detected in 17% of secondary acute myeloid leukemias (sAML) and 15% of chronic myelomonocytic leukemia (CMML) cases. These results from deep sequencing demonstrate a higher mutational detection rate than reported with conventional sequencing methodology. Mutant cases were associated with advanced age and monosomy 7/deletion 7q (–7/del(7q)) constituting poor prognostic factors. Analysis of serially collected samples indicated that SETBP1 mutations were acquired during leukemic evolution. Transduction with mutant Setbp1 led to the immortalization of mouse myeloid progenitors that showed enhanced proliferative capacity compared to cells transduced with wild-type Setbp1. Somatic mutations of SETBP1 seem to cause gain of function, are associated with myeloid leukemic transformation and convey poor prognosis in myelodysplastic syndromes (MDS) and CMML.


Nature Genetics | 2013

The landscape of somatic mutations in Down syndrome–related myeloid disorders

Kenichi Yoshida; Tsutomu Toki; Yusuke Okuno; Rika Kanezaki; Yuichi Shiraishi; Aiko Sato-Otsubo; Masashi Sanada; Myoung-ja Park; Kiminori Terui; Hiromichi Suzuki; Ayana Kon; Yasunobu Nagata; Yusuke Sato; Ru Nan Wang; Norio Shiba; Kenichi Chiba; Hiroko Tanaka; Asahito Hama; Hideki Muramatsu; Daisuke Hasegawa; Kazuhiro Nakamura; Hirokazu Kanegane; Keiko Tsukamoto; Souichi Adachi; Kiyoshi Kawakami; Koji Kato; Ryosei Nishimura; Shai Izraeli; Yasuhide Hayashi; Satoru Miyano

Transient abnormal myelopoiesis (TAM) is a myeloid proliferation resembling acute megakaryoblastic leukemia (AMKL), mostly affecting perinatal infants with Down syndrome. Although self-limiting in a majority of cases, TAM may evolve as non-self-limiting AMKL after spontaneous remission (DS-AMKL). Pathogenesis of these Down syndrome–related myeloid disorders is poorly understood, except for GATA1 mutations found in most cases. Here we report genomic profiling of 41 TAM, 49 DS-AMKL and 19 non-DS-AMKL samples, including whole-genome and/or whole-exome sequencing of 15 TAM and 14 DS-AMKL samples. TAM appears to be caused by a single GATA1 mutation and constitutive trisomy 21. Subsequent AMKL evolves from a pre-existing TAM clone through the acquisition of additional mutations, with major mutational targets including multiple cohesin components (53%), CTCF (20%), and EZH2, KANSL1 and other epigenetic regulators (45%), as well as common signaling pathways, such as the JAK family kinases, MPL, SH2B3 (LNK) and multiple RAS pathway genes (47%).


Nature Genetics | 2013

Exome sequencing identifies secondary mutations of SETBP1 and JAK3 in juvenile myelomonocytic leukemia

Hirotoshi Sakaguchi; Yusuke Okuno; Hideki Muramatsu; Kenichi Yoshida; Yuichi Shiraishi; Mariko Takahashi; Ayana Kon; Masashi Sanada; Kenichi Chiba; Hiroko Tanaka; Hideki Makishima; Xinan Wang; Yinyan Xu; Sayoko Doisaki; Asahito Hama; Koji Nakanishi; Yoshiyuki Takahashi; Nao Yoshida; Jaroslaw P. Maciejewski; Satoru Miyano; Seishi Ogawa; Seiji Kojima

Juvenile myelomonocytic leukemia (JMML) is an intractable pediatric leukemia with poor prognosis whose molecular pathogenesis is poorly understood, except for somatic or germline mutations of RAS pathway genes, including PTPN11, NF1, NRAS, KRAS and CBL, in the majority of cases. To obtain a complete registry of gene mutations in JMML, whole-exome sequencing was performed for paired tumor-normal DNA from 13 individuals with JMML (cases), which was followed by deep sequencing of 8 target genes in 92 tumor samples. JMML was characterized by a paucity of gene mutations (0.85 non-silent mutations per sample) with somatic or germline RAS pathway involvement in 82 cases (89%). The SETBP1 and JAK3 genes were among common targets for secondary mutations. Mutations in the latter were often subclonal and may be involved in the progression rather than the initiation of leukemia, and these mutations associated with poor clinical outcome. Our findings provide new insights into the pathogenesis and progression of JMML.


Blood | 2013

BCOR and BCORL1 mutations in myelodysplastic syndromes and related disorders

Virginie Chesnais; Yasunobu Nagata; Kenichi Yoshida; Laurianne Scourzic; Yusuke Okuno; Masashi Sanada; Yuichi Shiraishi; Véronique Gelsi-Boyer; Aline Renneville; Satoru Miyano; Hiraku Mori; Lee-Yung Shih; Sophie Park; Francois Dreyfus; Agnès Guerci-Bresler; Eric Solary; Christian Rose; Stéphane Cheze; Thomas Prebet; Norbert Vey; Marion Legentil; Yannis Duffourd; Stéphane de Botton; Claude Preudhomme; Daniel Birnbaum; Olivier Bernard; Seishi Ogawa; Michaela Fontenay; Olivier Kosmider

Patients with low-risk myelodysplastic syndromes (MDS) that rapidly progress to acute myeloid leukemia (AML) remain a challenge in disease management. Using whole-exome sequencing of an MDS patient, we identified a somatic mutation in the BCOR gene also mutated in AML. Sequencing of BCOR and related BCORL1 genes in a cohort of 354 MDS patients identified 4.2% and 0.8% of mutations respectively. BCOR mutations were associated with RUNX1 (P = .002) and DNMT3A mutations (P = .015). BCOR is also mutated in chronic myelomonocytic leukemia patients (7.4%) and BCORL1 in AML patients with myelodysplasia-related changes (9.1%). Using deep sequencing, we show that BCOR mutations arise after mutations affecting genes involved in splicing machinery or epigenetic regulation. In univariate analysis, BCOR mutations were associated with poor prognosis in MDS (overall survival [OS]: P = .013; cumulative incidence of AML transformation: P = .005). Multivariate analysis including age, International Prognostic Scoring System, transfusion dependency, and mutational status confirmed a significant inferior OS to patients with a BCOR mutation (hazard ratio, 3.3; 95% confidence interval, 1.4-8.1; P = .008). These data suggest that BCOR mutations define the clinical course rather than disease initiation. Despite infrequent mutations, BCOR analyses should be considered in risk stratification.

Collaboration


Dive into the Yusuke Okuno's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge