Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yusuke Yanagi is active.

Publication


Featured researches published by Yusuke Yanagi.


Nature | 2000

SLAM (CDw150) is a cellular receptor for measles virus

Hironobu Tatsuo; Nobuyuki Ono; Kotaro Tanaka; Yusuke Yanagi

Measles virus continues to be a major killer of children, claiming roughly one million lives a year. Measles virus infection causes profound immunosuppression, which makes measles patients susceptible to secondary infections accounting for high morbidity and mortality. The Edmonston strain of measles virus, and vaccine strains derived from it, use as a cellular receptor human CD46 (refs 3, 4), which is expressed on all nucleated cells; however, most clinical isolates of measles virus cannot use CD46 as a receptor. Here we show that human SLAM (signalling lymphocyte-activation molecule; also known as CDw150), a recently discovered membrane glycoprotein expressed on some T and B cells, is a cellular receptor for measles virus, including the Edmonston strain. Transfection with a human SLAM complementary DNA enables non-susceptible cell lines to bind measles virus, support measles virus replication and develop cytopathic effects. The distribution of SLAM on various cell lines is consistent with their susceptibility to clinical isolates of measles virus. The identification of SLAM as a receptor for measles virus opens the way to a better understanding of the pathogenesis of measles virus infection, especially the immunosuppression induced by measles virus.


Journal of Virology | 2001

Measles Viruses on Throat Swabs from Measles Patients Use Signaling Lymphocytic Activation Molecule (CDw150) but Not CD46 as a Cellular Receptor

Nobuyuki Ono; Hironobu Tatsuo; Yasufumi Hidaka; Tomonobu Aoki; Hiroko Minagawa; Yusuke Yanagi

ABSTRACT Both CD46 and signaling lymphocytic activation molecule (SLAM) have been shown to act as cellular receptors for measles virus (MV). The viruses on throat swabs from nine patients with measles in Japan were titrated on Vero cells stably expressing human SLAM. Samples from all but two patients produced numerous plaques on SLAM-expressing Vero cells, whereas none produced any plaques on Vero cells endogenously expressing CD46. The Edmonston strain of MV, which can use either CD46 or SLAM as a receptor, produced comparable titers on these two types of cells. The results strongly suggest that the viruses in the bodies of measles patients use SLAM but probably not CD46 as a cellular receptor.


Journal of Virology | 2001

Morbilliviruses Use Signaling Lymphocyte Activation Molecules (CD150) as Cellular Receptors

Hironobu Tatsuo; Nobuyuki Ono; Yusuke Yanagi

ABSTRACT Morbilliviruses comprise measles virus, canine distemper virus, rinderpest virus, and several other viruses that cause devastating human and animal diseases accompanied by severe immunosuppression and lymphopenia. Recently, we have shown that human signaling lymphocyte activation molecule (SLAM) is a cellular receptor for measles virus. In this study, we examined whether canine distemper and rinderpest viruses also use canine and bovine SLAMs, respectively, as cellular receptors. The Onderstepoort vaccine strain and two B95a (marmoset B cell line)-isolated strains of canine distemper virus caused extensive cytopathic effects in normally resistant CHO (Chinese hamster ovary) cells after expression of canine SLAM. The Ako vaccine strain of rinderpest virus produced strong cytopathic effects in bovine SLAM-expressing CHO cells. The data on entry with vesicular stomatitis virus pseudotypes bearing measles, canine distemper, or rinderpest virus envelope proteins were consistent with development of cytopathic effects in SLAM-expressing CHO cell clones after infection with the respective viruses, confirming that SLAM acts at the virus entry step (as a cellular receptor). Furthermore, most measles, canine distemper, and rinderpest virus strains examined could any use of the human, canine, and bovine SLAMs to infect cells. Our findings suggest that the use of SLAM as a cellular receptor may be a property common to most, if not all, morbilliviruses and explain the lymphotropism and immunosuppressive nature of morbilliviruses.


Cell | 1984

The human t cell antigen receptor is encoded by variable, diversity, and joining gene segments that rearrange to generate a complete V gene

Gerald Siu; Stephen P. Clark; Yasunobu Yoshikai; Marie Malissen; Yusuke Yanagi; Erich Strauss; Tak W. Mak; Leroy Hood

A cDNA clone YT35 , synthesized from poly(A)+ RNA of the human T cell tumor Molt 3, exhibits homology to the variable (V), joining (J), and constant (C) regions of immunoglobulin genes. We have isolated and sequenced the germ-line V and J gene segment counterparts to YT35 from a human cosmid library, and these failed to encode 14 nucleotides of the cDNA clone between the V and J regions. We postulate that these 14 nucleotides are encoded by a third gene segment analogous to the diversity (D) gene segments of immunoglobulin heavy chain genes. This T cell antigen receptor V gene appears to be assembled from three gene segments, V, D, and J, and accordingly most closely resembles immunoglobulin heavy chain V genes.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Crystal structure of measles virus hemagglutinin provides insight into effective vaccines

Takao Hashiguchi; Mizuho Kajikawa; Nobuo Maita; Makoto Takeda; Kimiko Kuroki; Kaori Sasaki; Daisuke Kohda; Yusuke Yanagi; Katsumi Maenaka

Measles still remains a major cause of childhood morbidity and mortality worldwide. Measles virus (MV) vaccines are highly successful, but the mechanism underlying their efficacy has been unclear. Here we report the crystal structure of the MV attachment protein, hemagglutinin, responsible for MV entry. The receptor-binding head domain exhibits a cubic-shaped β-propeller structure and forms a homodimer. N-linked sugars appear to mask the broad regions and cause the two molecules forming the dimer to tilt oppositely toward the horizontal plane. Accordingly, residues of the putative receptor-binding site, highly conserved among MV strains, are strategically positioned in the unshielded area of the protein. These conserved residues also serve as epitopes for neutralizing antibodies, ensuring the serological monotype, a basis for effective MV vaccines. Our findings suggest that sugar moieties in the MV hemagglutinin critically modulate virus–receptor interaction as well as antiviral antibody responses, differently from sugars of the HIV gp120, which allow for immune evasion.


PLOS Pathogens | 2007

Predominant infection of CD150+ lymphocytes and dendritic cells during measles virus infection of macaques.

Rik L. de Swart; Martin Ludlow; Lot de Witte; Yusuke Yanagi; Geert van Amerongen; Stephen McQuaid; Selma Yüksel; Teunis B. H. Geijtenbeek; W. Paul Duprex; Albert D. M. E. Osterhaus

Measles virus (MV) is hypothesized to enter the host by infecting epithelial cells of the respiratory tract, followed by viremia mediated by infected monocytes. However, neither of these cell types express signaling lymphocyte activation molecule (CD150), which has been identified as the receptor for wild-type MV. We have infected rhesus and cynomolgus macaques with a recombinant MV strain expressing enhanced green fluorescent protein (EGFP); thus bringing together the optimal animal model for measles and a virus that can be detected with unprecedented sensitivity. Blood samples and broncho-alveolar lavages were collected every 3 d, and necropsies were performed upon euthanasia 9 or 15 d after infection. EGFP production by MV-infected cells was visualized macroscopically, in both living and sacrificed animals, and microscopically by confocal microscopy and FACS analysis. At the peak of viremia, EGFP fluorescence was detected in skin, respiratory and digestive tract, but most intensely in all lymphoid tissues. B- and T-lymphocytes expressing CD150 were the major target cells for MV infection. Highest percentages (up to 30%) of infected lymphocytes were detected in lymphoid tissues, and the virus preferentially targeted cells with a memory phenotype. Unexpectedly, circulating monocytes did not sustain productive MV infection. In peripheral tissues, large numbers of MV-infected CD11c+ MHC class-II+ myeloid dendritic cells were detected in conjunction with infected T-lymphocytes, suggesting transmission of MV between these cell types. Fluorescent imaging of MV infection in non-human primates demonstrated a crucial role for lymphocytes and dendritic cells in the pathogenesis of measles and measles-associated immunosuppression.


Journal of Virology | 2002

SLAM (CD150)-Independent Measles Virus Entry as Revealed by Recombinant Virus Expressing Green Fluorescent Protein

Koji Hashimoto; Nobuyuki Ono; Hironobu Tatsuo; Hiroko Minagawa; Makoto Takeda; Kaoru Takeuchi; Yusuke Yanagi

ABSTRACT Wild-type measles virus (MV) strains use human signaling lymphocyte activation molecule (SLAM) as a cellular receptor, while vaccine strains such as the Edmonston strain can use both SLAM and CD46 as receptors. Although the expression of SLAM is restricted to cells of the immune system (lymphocytes, dendritic cells, and monocytes), histopathological studies with humans and experimentally infected monkeys have shown that MV also infects SLAM-negative cells, including epithelial, endothelial, and neuronal cells. In an attempt to explain these findings, we produced the enhanced green fluorescent protein (EGFP)-expressing recombinant MV (IC323-EGFP) based on the wild-type IC-B strain. IC323-EGFP showed almost the same growth kinetics as the parental recombinant MV and produced large syncytia exhibiting green autofluorescence in SLAM-positive cells. Interestingly, all SLAM-negative cell lines examined also showed green autofluorescence after infection with IC323-EGFP, although the virus hardly spread from the originally infected individual cells and thus did not induce syncytia. When the number of EGFP-expressing cells after infection was taken as an indicator, the infectivities of IC323-EGFP for SLAM-negative cells were 2 to 3 logs lower than those for SLAM-positive cells. Anti-MV hemagglutinin antibody or fusion block peptide, but not anti-CD46 antibody, blocked IC323-EGFP infection of SLAM-negative cells. This infection occurred under conditions in which entry via endocytosis was inhibited. These results indicate that MV can infect a variety of cells, albeit with a low efficiency, by using an as yet unidentified receptor(s) other than SLAM or CD46, in part explaining the observed MV infection of SLAM-negative cells in vivo.


Science Signaling | 2009

Mitofusin 2 Inhibits Mitochondrial Antiviral Signaling

Kai Yasukawa; Hiroyuki Oshiumi; Makoto Takeda; Naotada Ishihara; Yusuke Yanagi; Tsukasa Seya; Shun Ichiro Kawabata; Takumi Koshiba

A protein that mediates mitochondrial fusion also suppresses innate immune responses to viral infection. Fusing Roles Cells use a number of different receptors to detect and respond to various pathogen-associated molecular patterns. For the detection of cytosolic viruses, cells use retinoic acid–inducible gene I (RIG-I) and melanoma differentiation–associated gene 5 (MDA-5), two sensors of viral RNA. Upon binding to nucleic acid, these molecules bind to the adaptor protein MAVS, which is localized at the outer membrane of the mitochondrion. This interaction leads to the production of type I interferon (IFN) as part of the innate immune response to the virus. Yasukawa et al. searched for other outer mitochondrial membrane proteins that might modulate this response and found that mitofusin 2, a guanosine triphosphatase well-characterized for its role in mediating mitochondrial fusion, bound to MAVS and inhibited the activation of the transcription factors needed to trigger the production of IFN. Together, these data suggest that mitofusin 2 acts as an endogenous inhibitor of the antiviral response by inhibiting the interaction between MAVS and either RIG-I or MDA-5. The innate immune response to viral infection involves the activation of multiple signaling steps that culminate in the production of type I interferons (IFNs). Mitochondrial antiviral signaling (MAVS), a mitochondrial outer membrane adaptor protein, plays an important role in this process. Here, we report that mitofusin 2 (Mfn2), a mediator of mitochondrial fusion, interacts with MAVS to modulate antiviral immunity. Overexpression of Mfn2 resulted in the inhibition of retinoic acid–inducible gene I (RIG-I) and melanoma differentiation–associated gene 5 (MDA-5), two cytosolic sensors of viral RNA, as well as of MAVS-mediated activation of the transcription factors interferon regulatory factor 3 (IRF-3) and nuclear factor κB (NF-κB). In contrast, loss of endogenous Mfn2 enhanced virus-induced production of IFN-β and thereby decreased viral replication. Structure-function analysis revealed that Mfn2 interacted with the carboxyl-terminal region of MAVS through a heptad repeat region, providing a structural perspective on the regulation of the mitochondrial antiviral response. Our results suggest that Mfn2 acts as an inhibitor of antiviral signaling, a function that may be distinct from its role in mitochondrial dynamics.


Nature Structural & Molecular Biology | 2011

Structure of the measles virus hemagglutinin bound to its cellular receptor SLAM

Takao Hashiguchi; Toyoyuki Ose; Marie Kubota; Nobuo Maita; Jun Kamishikiryo; Katsumi Maenaka; Yusuke Yanagi

Measles virus, a major cause of childhood morbidity and mortality worldwide, predominantly infects immune cells using signaling lymphocyte activation molecule (SLAM) as a cellular receptor. Here we present crystal structures of measles virus hemagglutinin (MV-H), the receptor-binding glycoprotein, in complex with SLAM. The MV-H head domain binds to a β-sheet of the membrane-distal ectodomain of SLAM using the side of its β-propeller fold. This is distinct from attachment proteins of other paramyxoviruses that bind receptors using the top of their β-propeller. The structure provides templates for antiviral drug design, an explanation for the effectiveness of the measles virus vaccine, and a model of the homophilic SLAM-SLAM interaction involved in immune modulations. Notably, the crystal structures obtained show two forms of the MV-H–SLAM tetrameric assembly (dimer of dimers), which may have implications for the mechanism of fusion triggering.


Journal of Virology | 2003

Efficient Isolation of Wild Strains of Canine Distemper Virus in Vero Cells Expressing Canine SLAM (CD150) and Their Adaptability to Marmoset B95a Cells

Fumio Seki; Nobuyuki Ono; Ryoji Yamaguchi; Yusuke Yanagi

ABSTRACT We have previously shown that canine signaling lymphocyte activation molecule (SLAM; also known as CD150) acts as a cellular receptor for canine distemper virus (CDV). In this study, we established Vero cells stably expressing canine SLAM (Vero.DogSLAMtag cells). Viruses were isolated in Vero.DogSLAMtag cells one day after inoculation with spleen samples from five out of seven dogs with distemper. By contrast, virus isolation with reportedly sensitive marmoset B95a cells was only successful from three diseased animals at 7 to 10 days after inoculation, and no virus was recovered from any dogs when Vero cells were used for isolation. The CDV strain isolated in Vero.DogSLAMtag cells did not cause cytopathic effects in B95a and human SLAM-expressing Vero cells, whereas the strain isolated in B95a cells from the same dog did so in canine or human SLAM-expressing Vero cells as well as B95a cells. There were two amino acid differences in the hemagglutinin sequence between these strains. Cell fusion analysis after expression of envelope proteins and vesicular stomatitis virus pseudotype assay showed that their hemagglutinins were responsible for the difference in cell tropism between them. Site-directed mutagenesis indicated that glutamic acid to lysine substitution at position 530 of the hemagglutinin was required for the adaptation to the usage of marmoset SLAM. Our results indicate that Vero cells stably expressing canine SLAM are highly sensitive to CDV in clinical specimens and that only a single amino acid substitution in the hemagglutinin can allow the virus to adapt to marmoset SLAM.

Collaboration


Dive into the Yusuke Yanagi's collaboration.

Top Co-Authors

Avatar

Makoto Takeda

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge