Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yutaka Kakizoe is active.

Publication


Featured researches published by Yutaka Kakizoe.


Journal of Hypertension | 2009

Aberrant ENaC activation in Dahl salt-sensitive rats

Yutaka Kakizoe; Takehiro Ko; Naoki Wakida; Ai Maekawa; Taku Miyoshi; Naoki Shiraishi; Masataka Adachi; Zheng Zhang; Shyama Masilamani; Kimio Tomita

Background: The epithelial sodium channel (ENaC) plays an important role in the regulation of blood pressure by modulating Na reabsorption in the kidney. Dahl salt-sensitive rats on high-salt diet develop severe hypertension, and high-salt diet has been reported to stimulate ENaC mRNA expression in the kidney abnormally in Dahl salt-sensitive rats despite a suppressed plasma aldosterone concentration (PAC). Methods: We investigated the effect of high-salt diet on ENaC protein expression in Dahl salt-resistant and Dahl salt-sensitive rats, and examined the effect of amiloride (5 mg/kg per day) and eplerenone (0.125% diet) on blood pressure and renal injury in Dahl salt-sensitive rats. Results: Dahl salt-sensitive rats developed hypertension and renal damage following 4 weeks of treatment with high-salt diet. Although PAC and kidney aldosterone content were all suppressed by the high-salt diet in Dahl salt-sensitive rats, both β and γENaC mRNA expression and protein abundance were significantly increased. The molecular weight shift of γENaC from 85 to 70 kDa, an indication of ENaC activation, was clearly increased in Dahl salt-sensitive rats on high-salt diet compared with the low-salt group or Dahl salt-resistant rats on high-salt diet. Four weeks of treatment with amiloride, but not eplerenone, significantly ameliorated hypertension and kidney injury in Dahl salt-sensitive rats fed high-salt diet, suggesting aberrant aldosterone-independent activation of ENaC. Conclusion: These results suggest that inappropriate expression and activation of ENaC could be one of the underlying mechanisms by which Dahl salt-sensitive rats develop salt-sensitive hypertension and organ damage, and indicate a therapeutic benefit of amiloride in salt-sensitive hypertension where ENaC is excessively activated.


Journal of Hypertension | 2009

Camostat mesilate inhibits prostasin activity and reduces blood pressure and renal injury in salt-sensitive hypertension.

Ai Maekawa; Yutaka Kakizoe; Taku Miyoshi; Naoki Wakida; Takehiro Ko; Naoki Shiraishi; Masataka Adachi; Kimio Tomita

Prostasin, a glycosylphosphatidylinositol-anchored serine protease, regulates epithelial sodium channel (ENaC) activity. Sodium reabsorption through ENaC in distal nephron segments is a rate-limiting step in transepithelial sodium transport. Recently, proteolytic cleavage of ENaC subunits by prostasin has been shown to activate ENaC. Therefore, we hypothesized that serine protease inhibitors could inhibit ENaC activity in the kidney, leading to a decrease in blood pressure. We investigated the effects of camostat mesilate, a synthetic serine protease inhibitor, and FOY-251, an active metabolite of camostat mesilate, on sodium transport in the mouse cortical collecting duct cell line (M-1 cells) and on blood pressure in Dahl salt-sensitive rats. Treatment with camostat mesilate or FOY-251 decreased equivalent current (Ieq) in M-1 cells in a dose-dependent manner and inhibited the protease activity of prostasin in vitro. Silencing of the prostasin gene also reduced equivalent current in M-1 cells. The expression level of prostasin protein was not changed by application of camostat mesilate or FOY-251 to M-1 cells. Oral administration of camostat mesilate to Dahl salt-sensitive rats fed a high-salt diet resulted in a significant decrease in blood pressure with elevation of the urinary Na/K ratio, decrease in serum creatinine, reduction in urinary protein excretion, and improvement of renal injury markers such as collagen 1, collagen 3, transforming growth factor-β1, and nephrin. These findings suggest that camostat mesilate can decrease ENaC activity in M-1 cells probably through the inhibition of prostasin activity, and that camostat mesilate can have beneficial effects on both hypertension and kidney injury in Dahl salt-sensitive rats. Camostat mesilate might represent a new class of antihypertensive drugs with renoprotective effects in patients with salt-sensitive hypertension.


Nature Communications | 2014

The serine protease prostasin regulates hepatic insulin sensitivity by modulating TLR4 signalling

Kohei Uchimura; Manabu Hayata; Teruhiko Mizumoto; Yoshikazu Miyasato; Yutaka Kakizoe; Jun Morinaga; Tomoaki Onoue; Rika Yamazoe; Miki Ueda; Masataka Adachi; Taku Miyoshi; Naoki Shiraishi; Wataru Ogawa; Kazuki Fukuda; Tatsuya Kondo; Takeshi Matsumura; Eiichi Araki; Kimio Tomita; Kenichiro Kitamura

The effects of high-fat diet (HFD) and postprandial endotoxemia on the development of type 2 diabetes are not fully understood. Here we show that the serine protease prostasin (PRSS8) regulates hepatic insulin sensitivity by modulating Toll-like receptor 4 (TLR4)-mediated signalling. HFD triggers the suppression of PRSS8 expression by inducing endoplasmic reticulum (ER) stress and increases the TLR4 level in the liver. PRSS8 releases the ectodomain of TLR4 by cleaving it, which results in a reduction in the full-length form and reduces the activation of TLR4. Liver-specific PRSS8 knockout (LKO) mice develop insulin resistance associated with the increase in hepatic TLR4. Restoration of PRSS8 expression in livers of HFD, LKO and db/db mice decreases the TLR4 level and ameliorates insulin resistance. These results identify a novel physiological role for PRSS8 in the liver and provide new insight into the development of diabetes resulting from HFD or metabolic endotoxemia.


American Journal of Physiology-renal Physiology | 2012

In vivo contribution of serine proteases to the proteolytic activation of γENaC in aldosterone-infused rats

Kohei Uchimura; Yutaka Kakizoe; Tomoaki Onoue; Manabu Hayata; Jun Morinaga; Rika Yamazoe; Miki Ueda; Teruhiko Mizumoto; Masataka Adachi; Taku Miyoshi; Naoki Shiraishi; Yoshiki Sakai; Kimio Tomita; Kenichiro Kitamura

Aldosterone plays an important role in the regulation of blood pressure by modulating the activity of the epithelial sodium channel (ENaC) that consists of α-, β-, and γ-subunits. Aldosterone induces a molecular weight shift of γENaC from 85 to 70 kDa that is necessary for the channel activation. In vitro experiments demonstrated that a dual cleavage mechanism is responsible for this shift. It has been postulated that furin executes the primary cleavage in the Golgi and that the second cleavage is provided by other serine proteases such as prostasin or plasmin at the plasma membrane. However, the in vivo contribution of serine proteases to this cleavage remains unclear. To address this issue, we administered the synthetic serine protease inhibitor camostat mesilate (CM) to aldosterone-infused rats. CM decreased the abundance of the 70-kDa form of ENaC and led to a new 75-kDa form with a concomitant increase in the urinary Na-to-K ratio. Because CM inhibits the protease activity of serine proteases such as prostasin and plasmin, but not furin, our findings strongly indicate that CM inhibited the second cleavage of γENaC and subsequently suppressed ENaC activity. The results of our current studies also suggest the possibility that the synthetic serine protease inhibitor CM might represent a new strategy for the treatment of salt-sensitive hypertension in humans.


American Journal of Physiology-renal Physiology | 2013

The antifibrotic effect of a serine protease inhibitor in the kidney

Jun Morinaga; Yutaka Kakizoe; Taku Miyoshi; Tomoaki Onoue; Miki Ueda; Teruhiko Mizumoto; Rika Yamazoe; Kohei Uchimura; Manabu Hayata; Naoki Shiraishi; Masataka Adachi; Yoshiki Sakai; Kimio Tomita; Kenichiro Kitamura

Interstitial fibrosis is a final common pathway for the progression of chronic kidney diseases. Activated fibroblasts have an extremely important role in the progression of renal fibrosis, and transforming growth factor (TGF)-β₁ is a major activator of fibroblasts. Since previous reports have indicated that serine protease inhibitors have a potential to inhibit TGF-β₁ signaling in vitro, we hypothesized that a synthetic serine protease inhibitor, camostat mesilate (CM), could slow the progression of renal fibrosis. TGF-β₁ markedly increased the phosphorylation of TGF-β type I receptor, ERK 1/2, and Smad2/3 and the levels of profibrotic markers, such as α-smooth muscle actin (α-SMA), connective tissue growth factor (CTGF), and plasminogen activator inhibitor-1, in renal fibroblasts (NRK-49F cells), and they were all significantly reduced by CM. In protocol 1, 8-wk-old male Sprague-Dawley rats were subjected to unilateral ureteral obstruction (UUO) and were concurrently treated with a slow-release pellet of CM or vehicle for 14 days. Protocol 2 was similar to protocol 1 except that CM was administered 7 days after UUO. CM substantially improved renal fibrosis as determined by sirius red staining, collagen expression, and hydroxyproline levels. The phosphorylation of ERK1/2 and Smad2/3 and the levels of α-SMA, CTGF, promatrix metalloproteinase-2, and matrix metalloproteinase-2 were substantially increased by UUO, and they were all significantly attenuated by CM. These antifibrotic effects of CM were also observed in protocol 2. Our present results suggest the possibility that CM might represent a new class of therapeutic drugs for the treatment of renal fibrosis through the suppression of TGF-β₁ signaling.


American Journal of Physiology-renal Physiology | 2012

Effect of a serine protease inhibitor on the progression of chronic renal failure

Manabu Hayata; Yutaka Kakizoe; Kohei Uchimura; Jun Morinaga; Rika Yamazoe; Teruhiko Mizumoto; Tomoaki Onoue; Miki Ueda; Naoki Shiraishi; Masataka Adachi; Taku Miyoshi; Yoshiki Sakai; Kimio Tomita; Kenichiro Kitamura

The number of the chronic renal failure (CRF) patients is increasing explosively. Hypertension, proteinuria, inflammation, fibrosis, and oxidative stress are intertwined in a complicated manner that leads to the progression of CRF. However, the therapeutic strategies to delay its progression are limited. Since serine proteases are involved in many processes that contribute to these risk factors, we investigated the effects of a synthetic serine protease inhibitor, camostat mesilate (CM), on the progression of CRF in 5/6 nephrectomized (Nx) rats. Eighteen male Sprague-Dawley rats were divided into three groups: a sham-operated group (n = 6), a vehicle-treated Nx group (n = 6), and a CM-treated Nx group (n = 6). Following the 9-wk study period, both proteinuria and serum creatinine levels were substantially increased in the vehicle-treated Nx group, and treatment with CM significantly reduced proteinuria and serum creatinine levels. The levels of podocyte-associated proteins in glomeruli, such as nephrin and synaptopodin, were markedly decreased by 5/6 nephrectomy, and this was significantly ameliorated by CM. CM also suppressed the levels of inflammatory and fibrotic marker mRNAs including transforming growth factor-β1, TNF-α, collagen types I, III, and IV, and reduced glomerulosclerosis, glomerular hypertrophy, and interstitial fibrosis in histological studies. Furthermore, CM decreased the expression of NADPH oxidase component mRNAs, as well as reactive oxygen species generation and advanced oxidative protein product levels. Our present results strongly suggest the possibility that CM could be a useful therapeutic agent against the progression of CRF.


American Journal of Physiology-renal Physiology | 2013

Increased susceptibility of db/db mice to rosiglitazone-induced plasma volume expansion: Role of dysregulation of renal water transporters

Li Zhou; Gang Liu; Zhanjun Jia; Kevin T. Yang; Ying Sun; Yutaka Kakizoe; Mi Liu; Shu Feng Zhou; Ren Chen; Baoxue Yang; Tianxin Yang

Thiazolidinediones (TZDs), which are synthetic peroxisome proliferator-activated receptor subtype-γ (PPARγ), agonists are highly effective for treatment of type 2 diabetes. However, the side effect of fluid retention has significantly limited their application. Most of the previous studies addressing TZD-induced fluid retention employed healthy animals. The underlying mechanism of this phenomenon is still incompletely understood, particularly in the setting of disease state. The present study was undertaken to examine rosiglitazone (RGZ)-induced fluid retention in db/db mice and to further investigate the underlying mechanism. In response to RGZ treatment, db/db mice exhibited an accelerated plasma volume expansion as assessed by hematocrit (Hct) and fluorescent nanoparticles, in parallel with a greater increase in body weight, compared with lean controls. In response to RGZ-induced fluid retention, urinary Na(+) excretion and urine volume were significantly increased in lean mice. In contrast, the natriuretic and diuretic responses were significantly blunted in db/db mice. RGZ db/db mice exhibited a parallel decrease in plasma Na(+) concentration and plasma osmolality, contrasting to unchanged levels in lean controls. Imunoblotting analysis showed downregulation of renal aquaporin (AQP) 2 expression in response to RGZ treatment in lean mice but not in db/db mice. Renal AQP3 protein expression was unaffected by RGZ treatment in lean mice but was elevated in db/db mice. In contrast, the expression of Na(+)/H(+) exchanger-3 (NHE3) and NKCC2 was unchanged in either mouse strain. Together these results suggest that compared with the lean controls, db/db mice exhibited accelerated plasma volume expansion that was in part due to the inappropriate response of renal water transporters.


Nephron Experimental Nephrology | 2012

Renin angiotensin antagonists normalize aberrant activation of epithelial sodium channels in sodium-sensitive hypertension.

Hisako Ushio-Yamana; Shintaro Minegishi; Naomi Araki; Masanari Umemura; Koichi Tamura; Emi Maeda; Yutaka Kakizoe; Satoshi Umemura

Epithelial sodium channels (ENaC) are ion transporters in the aldosterone-sensitive distal nephron that play an important role in sodium reabsorption in the terminal nephron. Our study of inbred C57Bl6/J mice given a high-sodium diet showed increased ENaC expression accompanied by tubular renin activation on qRT-PCR of laser-captured tubule specimens and Western blotting of membrane proteins, despite inhibition of aldosterone. Treatment with an angiotensin-converting-enzyme inhibitor (ACEI) or an angiotensin receptor blocker (ARB) effectively lowered blood pressure. In addition to lowering blood pressure, ACEI and ARB inhibition downregulated ENaC and renin expression in renal tubules. These effects would act to suppress sodium reabsorption via ENaC and normalize molecular mechanisms that elevate blood pressure in response to increased salt intake.


American Journal of Physiology-renal Physiology | 2013

mPGES-1-derived PGE2 mediates dehydration natriuresis

Zhanjun Jia; Gang Liu; Ying Sun; Yutaka Kakizoe; Guangju Guan; Aihua Zhang; Shu Feng Zhou; Tianxin Yang

PGE(2) is a natriuretic factor whose production is elevated after water deprivation (WD) but its role in dehydration natriuresis is not well-defined. The goal of the present study was to investigate the role of microsomal prostaglandin E synthase-1 (mPGES-1) in dehydration natriuresis. After 24-h WD, wild-type (WT) mice exhibited a significant increase in 24-h urinary Na(+) excretion accompanied with normal plasma Na(+) concentration and osmolality. In contrast, WD-induced elevation of urinary Na(+) excretion was completely abolished in mPGES-1 knockout (KO) mice in parallel with increased plasma Na(+) concentration and a trend increase in plasma osmolality. WD induced a 1.8-fold increase in urinary PGE(2) output and a 1.6-fold increase in PGE(2) content in the renal medulla of WT mice, both of which were completely abolished by mPGES-1 deletion. Similar patterns of changes were observed for urinary nitrate/nitrite and cGMP. The natriuresis in dehydrated WT mice was associated with a significant downregulation of renal medullary epithelial Na channel-α mRNA and protein, contrasting to unaltered expressions in dehydrated KO mice. By quantitative RT-PCR, WD increased the endothelial nitric oxide synthase (eNOS), inducible NOS, and neuronal NOS expressions in the renal medulla of WT mice by 3.9-, 1.48-, and 2.6-fold, respectively, all of which were significantly blocked in mPGES-1 KO mice. The regulation of eNOS expression was further confirmed by immunoblotting. Taken together, our results suggest that mPGES-1-derived PGE(2) contributes to dehydration natriuresis likely via NO/cGMP.


Journal of Hepatology | 2014

mPGES-2 deletion remarkably enhances liver injury in streptozotocin-treated mice via induction of GLUT2

Ying Sun; Zhanjun Jia; Guangrui Yang; Yutaka Kakizoe; Mi Liu; Kevin T. Yang; Ying Liu; Baoxue Yang; Tianxin Yang

BACKGROUND & AIMS Microsomal prostaglandin E synthase-2 (mPGES-2) deletion does not influence in vivo PGE2 production and the function of this enzyme remains elusive. The present study was undertaken to investigate the role of mPGES-2 in streptozotocin (STZ)-induced type-1 diabetes and organ injuries. METHODS mPGES-2 wild type (WT) and knockout (KO) mice were treated by a single intraperitoneal injection of STZ at the dose of 120 mg/kg to induce type-1 diabetes. Subsequently, glycemic status and organ injuries were evaluated. RESULTS Following 4 days of STZ administration, mPGES-2 KO mice exhibited severe lethality in contrast to the normal phenotype observed in WT control mice. In a separate experiment, the analysis was performed at day 3 of the STZ treatment in order to avoid lethality. Blood glucose levels were similar between STZ-treated KO and WT mice. However, the livers of KO mice were yellowish with severe global hepatic steatosis, in parallel with markedly elevated liver enzymes and remarkable stomach expansion. However, the morphology of the other organs was largely normal. The STZ-treated KO mice displayed extensive hepatocyte apoptosis compared with WT mice in parallel with markedly enhanced inflammation and oxidative stress. More interestingly, a liver-specific 50% upregulation of GLUT2 was found in the KO mice accompanied with a markedly enhanced STZ accumulation and this induction of GLUT2 was likely to be associated with the insulin/SREBP-1c pathway. Primary cultured hepatocytes of KO mice exhibited an increased sensitivity to STZ-induced injury and higher cellular STZ content, which was markedly blunted by the selective GLUT2 inhibitor phloretin. CONCLUSIONS mPGES-2 deletion enhanced STZ-induced liver toxicity possibly via GLUT2-mediated STZ uptake, independently of diabetes mellitus.

Collaboration


Dive into the Yutaka Kakizoe's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge