Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yutaka Okawa is active.

Publication


Featured researches published by Yutaka Okawa.


Blood | 2009

Bortezomib induces canonical nuclear factor-kappaB activation in multiple myeloma cells.

Teru Hideshima; Hiroshi Ikeda; Dharminder Chauhan; Yutaka Okawa; Noopur Raje; Klaus Podar; Constantine S. Mitsiades; Nikhil C. Munshi; Paul G. Richardson; Ruben D. Carrasco; Kenneth C. Anderson

Bortezomib is a proteasome inhibitor with remarkable preclinical and clinical antitumor activity in multiple myeloma (MM) patients. The initial rationale for its use in MM was inhibition of nuclear factor (NF)-kappaB activity by blocking proteasomal degradation of inhibitor of kappaBalpha (IkappaBalpha). Bortezomib inhibits inducible NF-kappaB activity; however, its impact on constitutive NF-kappaB activity in MM cells has not yet been defined. In this study, we demonstrate that bortezomib significantly down-regulated IkappaBalpha expression and triggered NF-kappaB activation in MM cell lines and primary tumor cells from MM patients. Importantly, no inhibition of p65 (RelA) nuclear translocation was recognized after bortezomib treatment in a murine xenograft model bearing human MM cells. Bortezomib-induced NF-kappaB activation was mediated via the canonical pathway. Moreover, other classes of proteasome inhibitors also induced IkappaBalpha down-regulation associated with NF-kappaB activation. Molecular mechanisms whereby bortezomib induced IkappaBalpha down-regulation were further examined. Bortezomib triggered phosphorylation of IkappaB kinase (IKKbeta) and its upstream receptor-interacting protein 2, whereas IKKbeta inhibitor MLN120B blocked bortezomib-induced IkappaBalpha down-regulation and NF-kappaB activation, indicating receptor-interacting protein 2/IKKbeta signaling plays crucial role in bortezomib-induced NF-kappaB activation. Moreover, IKKbeta inhibitors enhanced bortezomib-induced cytotoxicity. Our studies therefore suggest that bortezomib-induced cytotoxicity cannot be fully attributed to inhibition of canonical NF-kappaB activity in MM cells.


Blood | 2009

Bortezomib induces canonical nuclear factor-κB activation in multiple myeloma cells

Teru Hideshima; Hiroshi Ikeda; Dharminder Chauhan; Yutaka Okawa; Noopur Raje; Klaus Podar; Constantine S. Mitsiades; Nikhil C. Munshi; Paul G. Richardson; Ruben D. Carrasco; Kenneth C. Anderson

Bortezomib is a proteasome inhibitor with remarkable preclinical and clinical antitumor activity in multiple myeloma (MM) patients. The initial rationale for its use in MM was inhibition of nuclear factor (NF)-kappaB activity by blocking proteasomal degradation of inhibitor of kappaBalpha (IkappaBalpha). Bortezomib inhibits inducible NF-kappaB activity; however, its impact on constitutive NF-kappaB activity in MM cells has not yet been defined. In this study, we demonstrate that bortezomib significantly down-regulated IkappaBalpha expression and triggered NF-kappaB activation in MM cell lines and primary tumor cells from MM patients. Importantly, no inhibition of p65 (RelA) nuclear translocation was recognized after bortezomib treatment in a murine xenograft model bearing human MM cells. Bortezomib-induced NF-kappaB activation was mediated via the canonical pathway. Moreover, other classes of proteasome inhibitors also induced IkappaBalpha down-regulation associated with NF-kappaB activation. Molecular mechanisms whereby bortezomib induced IkappaBalpha down-regulation were further examined. Bortezomib triggered phosphorylation of IkappaB kinase (IKKbeta) and its upstream receptor-interacting protein 2, whereas IKKbeta inhibitor MLN120B blocked bortezomib-induced IkappaBalpha down-regulation and NF-kappaB activation, indicating receptor-interacting protein 2/IKKbeta signaling plays crucial role in bortezomib-induced NF-kappaB activation. Moreover, IKKbeta inhibitors enhanced bortezomib-induced cytotoxicity. Our studies therefore suggest that bortezomib-induced cytotoxicity cannot be fully attributed to inhibition of canonical NF-kappaB activity in MM cells.


Blood | 2009

SNX-2112, a selective Hsp90 inhibitor, potently inhibits tumor cell growth, angiogenesis, and osteoclastogenesis in multiple myeloma and other hematologic tumors by abrogating signaling via Akt and ERK

Yutaka Okawa; Teru Hideshima; Paul M. Steed; Sonia Vallet; Steven E. Hall; Ken Huang; John R. Rice; Amy F. Barabasz; Brianna Foley; Hiroshi Ikeda; Noopur Raje; Tanyel Kiziltepe; Hiroshi Yasui; Sotaro Enatsu; Kenneth C. Anderson

Heat-shock protein 90 (Hsp90) acts as a molecular chaperone required for maintaining the conformational stability of client proteins regulating cell proliferation, survival, and apoptosis. Here we investigate the biologic significance of Hsp90 inhibition in multiple myeloma (MM) and other hematologic tumors using an orally available novel small molecule inhibitor SNX-2112, which exhibits unique activities relative to 17-allyamino-17-demethoxy-geldanamycin (17-AAG). SNX-2112 triggers growth inhibition and is more potent than 17-AAG against MM and other malignancies. It induces apoptosis via caspase-8, -9, -3, and poly (ADP-ribose) polymerase cleavage. SNX-2112 inhibits cytokine-induced Akt and extracellular signal-related kinase (ERK) activation and also overcomes the growth advantages conferred by interleukin-6, insulin-like growth factor-1, and bone marrow stromal cells. Importantly, SNX-2112 inhibits tube formation by human umbilical vein endothelial cells via abrogation of eNOS/Akt pathway and markedly inhibits osteoclast formation via down-regulation of ERK/c-fos and PU.1. Finally, SNX-2112, delivered by its prodrug SNX-5422, inhibits MM cell growth and prolongs survival in a xenograft murine model. Our results indicate that blockade of Hsp90 by SNX-2112 not only inhibits MM cell growth but also acts in the bone marrow microenvironment to block angiogenesis and osteoclastogenesis. Taken together, our data provide the framework for clinical studies of SNX-2112 to improve patient outcome in MM and other hematologic malignancies.


Clinical Cancer Research | 2009

The Monoclonal Antibody nBT062 Conjugated to Cytotoxic Maytansinoids Has Selective Cytotoxicity Against CD138-Positive Multiple Myeloma Cells In vitro and In vivo

Hiroshi Ikeda; Teru Hideshima; Mariateresa Fulciniti; Robert J. Lutz; Hiroshi Yasui; Yutaka Okawa; Tanyel Kiziltepe; Sonia Vallet; Samantha Pozzi; Loredana Santo; Giulia Perrone; Yu-Tzu Tai; Diana Cirstea; Noopur Raje; Christoph Uherek; Benjamin Dälken; Silke Aigner; Frank Osterroth; Nikhil C. Munshi; Paul G. Richardson; Kenneth C. Anderson

Purpose: We investigated the antitumor effect of murine/human chimeric CD138-specific monoclonal antibody nBT062 conjugated with highly cytotoxic maytansinoid derivatives against multiple myeloma (MM) cells in vitro and in vivo. Experimental Design: We examined the growth inhibitory effect of BT062-SPDB-DM4, BT062-SMCC-DM1, and BT062-SPP-DM1 against MM cell lines and primary tumor cells from MM patients. We also examined in vivo activity of these agents in murine MM cell xenograft model of human and severe combined immunodeficient (SCID) mice bearing implant bone chips injected with human MM cells (SCID-hu model). Results: Anti-CD138 immunoconjugates significantly inhibited growth of MM cell lines and primary tumor cells from MM patients without cytotoxicity against peripheral blood mononuclear cells from healthy volunteers. In MM cells, they induced G2-M cell cycle arrest, followed by apoptosis associated with cleavage of caspase-3, caspase-8, caspase-9, and poly(ADP-ribose) polymerase. Nonconjugated nBT062 completely blocked cytotoxicity induced by nBT062-maytansinoid conjugate, confirming that specific binding is required for inducing cytotoxicity. Moreover, nBT062-maytansinoid conjugates blocked adhesion of MM cells to bone marrow stromal cells. The coculture of MM cells with bone marrow stromal cells protects against dexamethasone-induced death but had no effect on the cytotoxicity of immunoconjugates. Importantly, nBT062-SPDB-DM4 and nBT062-SPP-DM1 significantly inhibited MM tumor growth in vivo and prolonged host survival in both the xenograft mouse models of human MM and SCID-hu mouse model. Conclusion: These results provide the preclinical framework supporting evaluation of nBT062-maytansinoid derivatives in clinical trials to improve patient outcome in MM.


Molecular Cancer Therapeutics | 2007

5-Azacytidine, a DNA methyltransferase inhibitor, induces ATR-mediated DNA double-strand break responses, apoptosis, and synergistic cytotoxicity with doxorubicin and bortezomib against multiple myeloma cells

Tanyel Kiziltepe; Teru Hideshima; Laurence Catley; Noopur Raje; Hiroshi Yasui; Norihiko Shiraishi; Yutaka Okawa; Hiroshi Ikeda; Sonia Vallet; Samantha Pozzi; Kenji Ishitsuka; Enrique M. Ocio; Dharminder Chauhan; Kenneth C. Anderson

In this study, we investigated the cytotoxicity of 5-azacytidine, a DNA methyltransferase inhibitor, against multiple myeloma (MM) cells, and characterized DNA damage–related mechanisms of cell death. 5-Azacytidine showed significant cytotoxicity against both conventional therapy-sensitive and therapy-resistant MM cell lines, as well as multidrug-resistant patient-derived MM cells, with IC50 of ∼0.8–3 μmol/L. Conversely, 5-azacytidine was not cytotoxic to peripheral blood mononuclear cells or patient-derived bone marrow stromal cells (BMSC) at these doses. Importantly, 5-azacytidine overcame the survival and growth advantages conferred by exogenous interleukin-6 (IL-6), insulin-like growth factor-I (IGF-I), or by adherence of MM cells to BMSCs. 5-Azacytidine treatment induced DNA double-strand break (DSB) responses, as evidenced by H2AX, Chk2, and p53 phosphorylations, and apoptosis of MM cells. 5-Azacytidine–induced apoptosis was both caspase dependent and independent, with caspase 8 and caspase 9 cleavage; Mcl-1 cleavage; Bax, Puma, and Noxa up-regulation; as well as release of AIF and EndoG from the mitochondria. Finally, we show that 5-azacytidine–induced DNA DSB responses were mediated predominantly by ATR, and that doxorubicin, as well as bortezomib, synergistically enhanced 5-azacytidine–induced MM cell death. Taken together, these data provide the preclinical rationale for the clinical evaluation of 5-azacytidine, alone and in combination with doxorubicin and bortezomib, to improve patient outcome in MM. [Mol Cancer Ther 2007;6(6):1718–27]


Blood | 2010

PI3K/p110{delta} is a novel therapeutic target in multiple myeloma.

Hiroshi Ikeda; Teru Hideshima; Mariateresa Fulciniti; Giulia Perrone; Naoya Miura; Hiroshi Yasui; Yutaka Okawa; Tanyel Kiziltepe; Loredana Santo; Sonia Vallet; Diana Cristea; Elisabetta Calabrese; Gullu Gorgun; Noopur Raje; Paul G. Richardson; Nikhil C. Munshi; Brian Lannutti; Kamal D. Puri; Neill A. Giese; Kenneth C. Anderson

In this study, we demonstrate expression and examined the biologic sequelae of PI3K/p110delta signaling in multiple myeloma (MM). Knockdown of p110delta by small interfering RNA caused significant inhibition of MM cell growth. Similarly, p110delta specific small molecule inhibitor CAL-101 triggered cytotoxicity against LB and INA-6 MM cell lines and patient MM cells, associated with inhibition of Akt phosphorylation. In contrast, CAL-101 did not inhibit survival of normal peripheral blood mononuclear cells. CAL-101 overcame MM cell growth conferred by interleukin-6, insulin-like growth factor-1, and bone marrow stromal cell coculture. Interestingly, inhibition of p110delta potently induced autophagy. The in vivo inhibition of p110delta with IC488743 was evaluated in 2 murine xenograft models of human MM: SCID mice bearing human MM cells subcutaneously and the SCID-hu model, in which human MM cells are injected within a human bone chip implanted subcutaneously in SCID mice. IC488743 significantly inhibited tumor growth and prolonged host survival in both models. Finally, combined CAL-101 with bortezomib induced synergistic cytotoxicity against MM cells. Our studies therefore show that PI3K/p110delta is a novel therapeutic target in MM and provide the basis for clinical evaluation of CAL-101 to improve patient outcome in MM.


Blood | 2010

PI3K/p110δ is a novel therapeutic target in multiple myeloma

Hiroshi Ikeda; Teru Hideshima; Mariateresa Fulciniti; Giulia Perrone; Naoya Miura; Hiroshi Yasui; Yutaka Okawa; Tanyel Kiziltepe; Loredana Santo; Sonia Vallet; Diana Cristea; Elisabetta Calabrese; Gullu Gorgun; Noopur Raje; Paul G. Richardson; Nikhil C. Munshi; Brian Lannutti; Kamal D. Puri; Neill A. Giese; Kenneth C. Anderson

In this study, we demonstrate expression and examined the biologic sequelae of PI3K/p110delta signaling in multiple myeloma (MM). Knockdown of p110delta by small interfering RNA caused significant inhibition of MM cell growth. Similarly, p110delta specific small molecule inhibitor CAL-101 triggered cytotoxicity against LB and INA-6 MM cell lines and patient MM cells, associated with inhibition of Akt phosphorylation. In contrast, CAL-101 did not inhibit survival of normal peripheral blood mononuclear cells. CAL-101 overcame MM cell growth conferred by interleukin-6, insulin-like growth factor-1, and bone marrow stromal cell coculture. Interestingly, inhibition of p110delta potently induced autophagy. The in vivo inhibition of p110delta with IC488743 was evaluated in 2 murine xenograft models of human MM: SCID mice bearing human MM cells subcutaneously and the SCID-hu model, in which human MM cells are injected within a human bone chip implanted subcutaneously in SCID mice. IC488743 significantly inhibited tumor growth and prolonged host survival in both models. Finally, combined CAL-101 with bortezomib induced synergistic cytotoxicity against MM cells. Our studies therefore show that PI3K/p110delta is a novel therapeutic target in MM and provide the basis for clinical evaluation of CAL-101 to improve patient outcome in MM.


Leukemia | 2009

Ascorbic acid inhibits antitumor activity of bortezomib in vivo

Giulia Perrone; Teru Hideshima; Hiroshi Ikeda; Yutaka Okawa; Elisabetta Calabrese; Gullu Gorgun; Loredana Santo; Diana Cirstea; Noopur Raje; D Chauhan; Michele Baccarani; Michele Cavo; Kenneth C. Anderson

Earlier studies have shown that ascorbic acid (vitamin C) inhibits bortezomib-induced cytotoxicity against cancer cells in vitro. However, the clinical significance of vitamin C on bortezomib treatment is unclear. In this study, we examined whether daily oral intake of vitamin C inhibits antimultiple myeloma (MM) activities of bortezomib. Vitamin C, at orally achievable concentrations, inhibited in vitro MM cell cytotoxicity of bortezomib and blocked its inhibitory effect on 20S proteasome activity. Specifically, plasma collected from healthy volunteers taking 1 g/day vitamin C reduced bortezomib-induced MM cell death in vitro. This antagonistic effect of vitamin C against proteasome inhibitors is limited to the boronate class of inhibitors (bortezomib and MG262). In vivo activity of this combination treatment was then evaluated using our xenograft model of human MM in SCID (severe combined immune-deficient) mice. Bortezomib (0.1 mg/kg twice a week for 4 weeks) significantly inhibits in vivo MM cell growth, which was blocked by oral vitamin C (40 mg/kg/day). Therefore, our results for the first time show that vitamin C can significantly reduce the activity of bortezomib treatment in vivo; and importantly, suggest that patients receiving treatment with bortezomib should avoid taking vitamin C dietary supplements.


Oncogene | 2010

AT7519, A novel small molecule multi-cyclin-dependent kinase inhibitor, induces apoptosis in multiple myeloma via GSK-3β activation and RNA polymerase II inhibition

Loredana Santo; Sonia Vallet; Teru Hideshima; Diana Cirstea; Hiroshi Ikeda; Samantha Pozzi; Kishan Patel; Yutaka Okawa; Gullu Gorgun; Giulia Perrone; Elisabetta Calabrese; Murray Yule; Matt Squires; Marco Ladetto; Mario Boccadoro; Paul G. Richardson; Nikhil C. Munshi; Kenneth C. Anderson; Noopur Raje

Dysregulated cell cycling is a universal hallmark of cancer and is often mediated by abnormal activation of cyclin-dependent kinases (CDKs) and their cyclin partners. Overexpression of individual complexes are reported in multiple myeloma (MM), making them attractive therapeutic targets. In this study, we investigate the preclinical activity of a novel small-molecule multi-CDK inhibitor, AT7519, in MM. We show the anti-MM activity of AT7519 displaying potent cytotoxicity and apoptosis; associated with in vivo tumor growth inhibition and prolonged survival. At the molecular level, AT7519 inhibited RNA polymerase II (RNA pol II) phosphorylation, a CDK9, 7 substrate, associated with decreased RNA synthesis confirmed by [3H] Uridine incorporation. In addition, AT7519 inhibited glycogen synthase kinase 3β (GSK-3β) phosphorylation; conversely pretreatment with a selective GSK-3 inhibitor and shRNA GSK-3β knockdown restored MM survival, suggesting the involvement of GSK-3β in AT7519-induced apoptosis. GSK-3β activation was independent of RNA pol II dephosphorylation confirmed by α-amanitin, a specific RNA pol II inihibitor, showing potent inhibition of RNA pol II phosphorylation without corresponding effects on GSK-3β phosphorylation. These results offer new insights into the crucial, yet controversial role of GSK-3β in MM and show significant anti-MM activity of AT7519, providing the rationale for its clinical evaluation in MM.


Blood | 2009

Biologic sequelae of IκB kinase (IKK) inhibition in multiple myeloma: therapeutic implications

Teru Hideshima; Dharminder Chauhan; Tanyel Kiziltepe; Hiroshi Ikeda; Yutaka Okawa; Klaus Podar; Noopur Raje; Alexei Protopopov; Nikhil C. Munshi; Paul G. Richardson; Ruben D. Carrasco; Kenneth C. Anderson

Nuclear factor-kappaB (NF-kappaB) has an important role in multiple myeloma (MM) cell pathogenesis in the context of the bone marrow (BM) microenvironment. In NF-kappaB signaling cascades, IkappaB kinase alpha (IKKalpha) and IKKbeta are key molecules that predominantly mediate noncanonical and canonical pathways, respectively. In this study, we examined the biologic sequelae of the inhibition of IKKalpha versus IKKbeta in MM cell lines. All MM cell lines have constitutive canonical NF-kappaB activity, and a subset of MM cell lines shows noncanonical NF-kappaB activity. Adhesion to BM stromal cells further activates both canonical and noncanonical NF-kappaB activity. IKKbeta inhibitor MLN120B blocks canonical pathway and growth of MM cell lines but does not inhibit the noncanonical NF-kappaB pathway. Although IKKalpha knockdown induces significant growth inhibition in the cell lines with both canonical and noncanonical pathways, it does not inhibit NF-kappaB activation. Importantly, IKKalpha down-regulation decreases expression of beta-catenin and aurora-A, which are known to mediate MM cell growth and survival. Finally, IKKbeta inhibitor enhances the growth inhibition triggered by IKKalpha down-regulation in MM cells with both canonical and noncanonical NF-kappaB activity. Combination therapy targeting these kinases therefore represents a promising treatment strategy in MM.

Collaboration


Dive into the Yutaka Okawa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hiroshi Ikeda

Sapporo Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hiroshi Yasui

Sapporo Medical University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge