Yutaka Shindo
Keio University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yutaka Shindo.
Chemical Communications | 2011
Akihiro Matsui; Keitaro Umezawa; Yutaka Shindo; Tomohiko Fujii; Daniel Citterio; Kotaro Oka; Koji Suzuki
We report a novel near-infrared fluorescent calcium probe (KFCA), which has good optical properties such as intense NIR fluorescence emission (670 nm, QY: 0.24), excellent ON/OFF ratio (120-fold), and good wavelength-compatibility with visible-light-emissive fluorophores (Fluo-4, DsRed2), and which is applicable for real-time dual-colour intracellular Ca(2+) imaging.
PLOS ONE | 2011
Yutaka Shindo; Tomohiko Fujii; Hirokazu Komatsu; Daniel Citterio; Kohji Hotta; Koji Suzuki; Kotaro Oka
Mg2+ plays important roles in numerous cellular functions. Mitochondria take part in intracellular Mg2+ regulation and the Mg2+ concentration in mitochondria affects the synthesis of ATP. However, there are few methods to observe Mg2+ in mitochondria in intact cells. Here, we have developed a novel Mg2+–selective fluorescent probe, KMG-301, that is functional in mitochondria. This probe changes its fluorescence properties solely depending on the Mg2+ concentration in mitochondria under physiologically normal conditions. Simultaneous measurements using this probe together with a probe for cytosolic Mg2+, KMG-104, enabled us to compare the dynamics of Mg2+ in the cytosol and in mitochondria. With this method, carbonyl cyanide p-(trifluoromethoxy) phenylhydrazone (FCCP)–induced Mg2+ mobilization from mitochondria to the cytosol was visualized. Although a FCCP–induced decrease in the Mg2+ concentration in mitochondria and an increase in the cytosol were observed both in differentiated PC12 cells and in hippocampal neurons, the time-courses of concentration changes varied with cell type. Moreover, the relationship between mitochondrial Mg2+ and Parkinsons disease was analyzed in a cellular model of Parkinsons disease by using the 1-methyl-4-phenylpyridinium ion (MPP+). A gradual decrease in the Mg2+ concentration in mitochondria was observed in response to MPP+ in differentiated PC12 cells. These results indicate that KMG-301 is useful for investigating Mg2+ dynamics in mitochondria. All animal procedures to obtain neurons from Wistar rats were approved by the ethical committee of Keio University (permit number is 09106-(1)).
Scientific Reports | 2016
Ryuichi Tanimoto; Takumi Hiraiwa; Yuichiro Nakai; Yutaka Shindo; Kotaro Oka; Noriko Hiroi; Akira Funahashi
For a better understanding of the mechanisms behind cellular functions, quantification of the heterogeneity in an organism or cells is essential. Recently, the importance of quantifying temperature has been highlighted, as it correlates with biochemical reaction rates. Several methods for detecting intracellular temperature have recently been established. Here we develop a novel method for sensing temperature in living cells based on the imaging technique of fluorescence of quantum dots. We apply the method to quantify the temperature difference in a human derived neuronal cell line, SH-SY5Y. Our results show that temperatures in the cell body and neurites are different and thus suggest that inhomogeneous heat production and dissipation happen in a cell. We estimate that heterogeneous heat dissipation results from the characteristic shape of neuronal cells, which consist of several compartments formed with different surface-volume ratios. Inhomogeneous heat production is attributable to the localization of specific organelles as the heat source.
Journal of Neuroscience Research | 2010
Yutaka Shindo; Ai Fujimoto; Kohji Hotta; Koji Suzuki; Kotaro Oka
Excess administration of glutamate is known to induce Ca2+ overload in neurons, which is the first step in excitotoxicity. Although some reports have suggested a role for Mg2+ in the excitotoxicity, little is known about its actual contribution. To investigate the role of Mg2+ in the excitotoxicity, we simultaneously measured intracellular Ca2+ and Mg2+, using fluorescent dyes, Fura red, a fluorescent Ca2+ probe, and KMG‐104, a highly selective fluorescent Mg2+ probe developed by our group, respectively. Administration of 100 μM glutamate supplemented with 10 μM glycine to rat hippocampal neurons induced an increase in intracellular Mg2+ concentration ([Mg2+]i). Extracellular Mg2+ was not required for this glutamate‐induced increase in [Mg2+]i, and no increase in intracellular Ca2+ concentration ([Ca2+]i) or [Mg2+]i was observed in neurons in nominally Ca2+‐free medium. Application of 5 μM carbonyl cyanide p‐(trifluoromethoxy) phenylhydrazone (FCCP), an uncoupler of mitochondrial inner membrane potential, also elicited increases in [Ca2+]i and [Mg2+]i. Subsequent administration of glutamate and glycine following FCCP treatment did not induce a further increase in [Mg2+]i but did induce an additive increase in [Ca2+]i. Moreover, the glutamate‐induced increase in [Mg2+]i was observed only in mitochondria localized areas. These results support the idea that glutamate is able to induced Mg2+ efflux from mitochondria to the cytosol. Furthermore, pretreatment with Ru360, an inhibitor of the mitochondrial Ca2+ uniporter, prevented this [Mg2+]i increase. These results indicate that glutamate‐induced increases in [Mg2+]i result from the Mg2+ release from mitochondria and that Ca2+ accumulation in the mitochondria is required for this Mg2+ release.
Scientific Reports | 2016
Ryu Yamanaka; Sho Tabata; Yutaka Shindo; Kohji Hotta; Koji Suzuki; Tomoyoshi Soga; Kotaro Oka
Cellular energy production processes are composed of many Mg2+ dependent enzymatic reactions. In fact, dysregulation of Mg2+ homeostasis is involved in various cellular malfunctions and diseases. Recently, mitochondria, energy-producing organelles, have been known as major intracellular Mg2+ stores. Several biological stimuli alter mitochondrial Mg2+ concentration by intracellular redistribution. However, in living cells, whether mitochondrial Mg2+ alteration affect cellular energy metabolism remains unclear. Mg2+ transporter of mitochondrial inner membrane MRS2 is an essential component of mitochondrial Mg2+ uptake system. Here, we comprehensively analyzed intracellular Mg2+ levels and energy metabolism in Mrs2 knockdown (KD) cells using fluorescence imaging and metabolome analysis. Dysregulation of mitochondrial Mg2+ homeostasis disrupted ATP production via shift of mitochondrial energy metabolism and morphology. Moreover, Mrs2 KD sensitized cellular tolerance against cellular stress. These results indicate regulation of mitochondrial Mg2+ via MRS2 critically decides cellular energy status and cell vulnerability via regulation of mitochondrial Mg2+ level in response to physiological stimuli.
FEBS Letters | 2013
Ryu Yamanaka; Yutaka Shindo; Kohji Hotta; Koji Suzuki; Kotaro Oka
Intracellular Mg2+ concentration ( [ Mg 2 + ] i ) and NO regulate cell survival and death. To reveal the involvement of NO in intracellular Mg2+ regulation, we visualized intracellular Mg2+ using the fluorescent Mg2+ indicator KMG‐104‐AM in rat hippocampal neurons. Pharmacological experiments using SNAP, 8‐Br‐cGMP, diazoxide and several inhibitors revealed that the NO/cGMP/Protein kinsase G (PKG) signaling pathway triggers an increase in [ Mg 2 + ] i , and that Mg2+ mobilization is due to Mg2+ release from mitochondria induced by mitoKATP channel opening. In addition, Mg2+ release is potentiated by the positive feedback loop including mitoKATP channel opening, mitochondrial depolarization and PKC activation.
Biochimica et Biophysica Acta | 2015
Yutaka Shindo; Ryu Yamanaka; Koji Suzuki; Kohji Hotta; Kotaro Oka
Parkinsons disease (PD) is a neurodegenerative disorder resulting from mitochondrial dysfunction in dopaminergic neurons. Mitochondria are believed to be responsible for cellular Mg²⁺ homeostasis. Mg²⁺ is indispensable for maintaining ordinal cellular functions, hence perturbation of the cellular Mg²⁺ homeostasis may be responsible for the disorders of physiological functions and diseases including PD. However, the changes in intracellular Mg²⁺ concentration ([Mg²⁺]i) and the role of Mg²⁺ in PD have still been obscure. In this study, we investigated [Mg²⁺]i and its effect on neurodegeneration in the 1-methyl-4-phenylpyridinium (MPP⁺) model of PD in differentiated PC12 cells. Application of MPP⁺ induced an increase in [Mg²⁺]i immediately via two different pathways: Mg²⁺ release from mitochondria and Mg²⁺ influx across cell membrane, and the increased [Mg²⁺]i sustained for more than 16 h after MPP⁺ application. Suppression of Mg²⁺ influx decreased the viability of the cells exposed to MPP⁺. The cell viability correlated highly with [Mg²⁺]i. In the PC12 cells with suppressed Mg²⁺ influx, ATP concentration decreased and the amount of reactive oxygen species (ROS) increased after an 8h exposure to MPP⁺. Our results indicate that the increase in [Mg²⁺]i inhibited cellular ROS generation and maintained ATP production, which resulted in the protection from MPP⁺ toxicity.
Journal of Neuroscience Methods | 2015
Ryo Tanamoto; Yutaka Shindo; Norihisa Miki; Yoshinori Matsumoto; Kohji Hotta; Kotaro Oka
BACKGROUND Indium-tin-oxide (ITO) glass electrodes possess the properties of optical transparency and high electrical conductivity, which enables the electrical stimulation of cultured cells to be performed whilst also measuring the responses with fluorescent imaging techniques. However, the quantitative relationship between the intensity of the stimulating current and the cell response is unclear when using conventional methods that employ a separated configuration of counter and stimulation electrodes. NEW METHOD A quantitative electrical current stimulation device without the use of a counter electrode was fabricated. RESULTS Nerve growth factor (NGF)-induced differentiated PC12 cells were cultured on an ITO single glass electrode, and the Ca(2+) response to electrical stimuli was measured using fluorescent Ca(2+) imaging. ITO electrode devices with a width less than 0.1mm were found to evoke a Ca(2+) response in the PC12 cells. Subsequent variation in the length of the device in the range of 2-10mm was found to have little influence on the efficiency of the electric stimulus. We found that the stimulation of the cells was dependent on the electrical current, when greater than 60 μA, rather than on the Joule heat, regardless of the width and length of the conductive area. COMPARISON WITH EXISTING METHOD(S) Because of the cells directly in contact with the electrode, our device enables to stimulate the cells specifically, comparing with previous devices with the counter electrode. CONCLUSIONS The ITO device without the use of a counter electrode is a useful tool for evaluating the quantitative neural excitability of cultured neurons.
Biochimica et Biophysica Acta | 2016
Yutaka Shindo; Ryu Yamanaka; Koji Suzuki; Kohji Hotta; Kotaro Oka
Mg(2+) is an essential cation to maintain cellular functions, and intracellular Mg(2+) concentration ([Mg(2+)]i) is regulated by Mg(2+) channels and transporters. In our previous study, we demonstrated that MPP(+) elicits Mg(2+) influx across the cell membrane and Mg(2+) mobilization from mitochondria, and the resulting [Mg(2+)]i is an important determinants of the cell viability in MPP(+) model of Parkinsons disease (PD). It indicates that cellular Mg(2+) transport is one of the important factors to determine the progress of PD. However, whether the expression levels of Mg(2+) transport proteins change in the progress of PD has still been obscure. In this study, we estimated the mRNA expression levels of Mg(2+) transport proteins upon the exposure to MPP(+). In thirteen Mg(2+) transport proteins examined, mRNA expression level of SLC41A2 was increased and that of ACDP2, NIPA1 and MMgT2 were decreased. Knockdown of SLC41A2, ACDP2 or NIPA1 accelerated the MPP(+)-induced cell degeneration, and overexpression attenuated it. The decrease in the mRNA expression levels of NIPA1 and MMgT2 were also elicited by rotenone, H2O2 and FCCP, indicating that mitochondrial dysfunction related to this down-regulation. The increase in that of SLC41A2 was induced by an uncoupler, FCCP, as well as MPP(+), suggesting that it is an intrinsic protection mechanism against depolarized mitochondrial membrane potential and/or cellular ATP depletion. Our results shown here indicate that alteration of Mg(2+) transport proteins is implicated in the MPP(+) model of PD, and it affects cell degeneration.
Neuroscience | 2015
Ryu Yamanaka; Yutaka Shindo; T. Karube; Kohji Hotta; Koji Suzuki; Kotaro Oka
Homeostasis of magnesium ion (Mg(2+)) plays key roles in healthy neuronal functions, and deficiency of Mg(2+) is involved in various neuronal diseases. In neurons, we have reported that excitotoxicity induced by excitatory neurotransmitter glutamate increases intracellular Mg(2+) concentration ([Mg(2+)]i). However, it has not been revealed whether neuronal activity under physiological condition modulates [Mg(2+)]i. The aim of this study is to explore the direct relationship between neural activity and [Mg(2+)]i dynamics. In rat primary-dissociated hippocampal neurons, the [Mg(2+)]i and [Ca(2+)]i dynamics were simultaneously visualized with a highly selective fluorescent Mg(2+) probe, KMG-104, and a fluorescent Ca(2+) probe, Fura Red, respectively. [Mg(2+)]i increase concomitant with neural activity by direct current stimulation was observed in neurons plated on an indium-tin oxide (ITO) glass electrode, which enables fluorescent imaging during neural stimulation. The neural activity-dependent [Mg(2+)]i increase was also detected in neurons whose excitability was enhanced by the treatment of a voltage-gated K(+) channel blocker, tetraethylammonium (TEA) at the timings of spontaneous Ca(2+) increase. Furthermore, the [Mg(2+)]i increase was abolished in Mg(2+)-free extracellular medium, indicating [Mg(2+)]i increase is due to Mg(2+) influx induced by neural activity. The direct neuronal depolarization by veratridine, a Na(+) channel opener, induced [Mg(2+)]i increase, and this [Mg(2+)]i increase was suppressed by the pretreatment of a non-specific Mg(2+) channel inhibitor, 2-aminoethoxydiphenyl borate (2-APB). Overall, activity-dependent [Mg(2+)]i increase results from Mg(2+) influx through 2-APB-sensitive channels in rat hippocampal neurons.