Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yutaka Yoshii is active.

Publication


Featured researches published by Yutaka Yoshii.


Journal of Immunology | 2014

Autophagy induction by SIRT6 through attenuation of insulin-like growth factor signaling is involved in the regulation of human bronchial epithelial cell senescence.

Naoki Takasaka; Jun Araya; Hiromichi Hara; Saburo Ito; Kenji Kobayashi; Yusuke Kurita; Hiroshi Wakui; Yutaka Yoshii; Yoko Yumino; Satoko Fujii; Shunsuke Minagawa; Chikako Tsurushige; Jun Kojima; Takanori Numata; Kenichiro Shimizu; Makoto Kawaishi; Yumi Kaneko; Noriki Kamiya; Jun Hirano; Makoto Odaka; Toshiaki Morikawa; Stephen L. Nishimura; Katsutoshi Nakayama; Kazuyoshi Kuwano

Cigarette smoke (CS)–induced cellular senescence has been implicated in the pathogenesis of chronic obstructive pulmonary disease, and SIRT6, a histone deacetylase, antagonizes this senescence, presumably through the attenuation of insulin-like growth factor (IGF)-Akt signaling. Autophagy controls cellular senescence by eliminating damaged cellular components and is negatively regulated by IGF-Akt signaling through the mammalian target of rapamycin (mTOR). SIRT1, a representative sirtuin family, has been demonstrated to activate autophagy, but a role for SIRT6 in autophagy activation has not been shown. Therefore, we sought to investigate the regulatory role for SIRT6 in autophagy activation during CS-induced cellular senescence. SIRT6 expression levels were modulated by cDNA and small interfering RNA transfection in human bronchial epithelial cells (HBECs). Senescence-associated β-galactosidase staining and Western blotting of p21 were performed to evaluate senescence. We demonstrated that SIRT6 expression levels were decreased in lung homogenates from chronic obstructive pulmonary disease patients, and SIRT6 expression levels correlated significantly with the percentage of forced expiratory volume in 1 s/forced vital capacity. CS extract (CSE) suppressed SIRT6 expression in HBECs. CSE-induced HBEC senescence was inhibited by SIRT6 overexpression, whereas SIRT6 knockdown and mutant SIRT6 (H133Y) without histone deacetylase activity enhanced HBEC senescence. SIRT6 overexpression induced autophagy via attenuation of IGF-Akt-mTOR signaling. Conversely, SIRT6 knockdown and overexpression of a mutant SIRT6 (H133Y) inhibited autophagy. Autophagy inhibition by knockdown of ATG5 and LC3B attenuated the antisenescent effect of SIRT6 overexpression. These results suggest that SIRT6 is involved in CSE-induced HBEC senescence via autophagy regulation, which can be attributed to attenuation of IGF-Akt-mTOR signaling.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2013

Mitochondrial fragmentation in cigarette smoke-induced bronchial epithelial cell senescence

Hiromichi Hara; Jun Araya; Saburo Ito; Kenji Kobayashi; Naoki Takasaka; Yutaka Yoshii; Hiroshi Wakui; Jun Kojima; Kenichiro Shimizu; Takanori Numata; Makoto Kawaishi; Noriki Kamiya; Makoto Odaka; Toshiaki Morikawa; Yumi Kaneko; Katsutoshi Nakayama; Kazuyoshi Kuwano

Mitochondria are dynamic organelles that continuously change their shape through fission and fusion. Disruption of mitochondrial dynamics is involved in disease pathology through excessive reactive oxygen species (ROS) production. Accelerated cellular senescence resulting from cigarette smoke exposure with excessive ROS production has been implicated in the pathogenesis of chronic obstructive pulmonary disease (COPD). Hence, we investigated the involvement of mitochondrial dynamics and ROS production in terms of cigarette smoke extract (CSE)-induced cellular senescence in human bronchial epithelial cells (HBEC). Mitochondrial morphology was examined by electron microscopy and fluorescence microscopy. Senescence-associated β-galactosidase staining and p21 Western blotting of primary HBEC were performed to evaluate cellular senescence. Mitochondrial-specific superoxide production was measured by MitoSOX staining. Mitochondrial fragmentation was induced by knockdown of mitochondrial fusion proteins (OPA1 or Mitofusins) by small-interfering RNA transfection. N-acetylcysteine and Mito-TEMPO were used as antioxidants. Mitochondria in bronchial epithelial cells were prone to be more fragmented in COPD lung tissues. CSE induced mitochondrial fragmentation and mitochondrial ROS production, which were responsible for acceleration of cellular senescence in HBEC. Mitochondrial fragmentation induced by knockdown of fusion proteins also increased mitochondrial ROS production and percentages of senescent cells. HBEC senescence and mitochondria fragmentation in response to CSE treatment were inhibited in the presence of antioxidants. CSE-induced mitochondrial fragmentation is involved in cellular senescence through the mechanism of mitochondrial ROS production. Hence, disruption of mitochondrial dynamics may be a part of the pathogenic sequence of COPD development.


Respiratory Research | 2017

Pirfenidone inhibits myofibroblast differentiation and lung fibrosis development during insufficient mitophagy.

Yusuke Kurita; Jun Araya; Shunsuke Minagawa; Hiromichi Hara; Akihiro Ichikawa; Nayuta Saito; Tsukasa Kadota; Kazuya Tsubouchi; Nahoko Sato; Masahiro Yoshida; Kenji Kobayashi; Saburo Ito; Yu Fujita; Hirofumi Utsumi; Haruhiko Yanagisawa; Mitsuo Hashimoto; Hiroshi Wakui; Yutaka Yoshii; Takeo Ishikawa; Takanori Numata; Yumi Kaneko; Hisatoshi Asano; Makoto Yamashita; Makoto Odaka; Toshiaki Morikawa; Katsutoshi Nakayama; Kazuyoshi Kuwano

BackgroundPirfenidone (PFD) is an anti-fibrotic agent used to treat idiopathic pulmonary fibrosis (IPF), but its precise mechanism of action remains elusive. Accumulation of profibrotic myofibroblasts is a crucial process for fibrotic remodeling in IPF. Recent findings show participation of autophagy/mitophagy, part of the lysosomal degradation machinery, in IPF pathogenesis. Mitophagy has been implicated in myofibroblast differentiation through regulating mitochondrial reactive oxygen species (ROS)-mediated platelet-derived growth factor receptor (PDGFR) activation. In this study, the effect of PFD on autophagy/mitophagy activation in lung fibroblasts (LF) was evaluated, specifically the anti-fibrotic property of PFD for modulation of myofibroblast differentiation during insufficient mitophagy.MethodsTransforming growth factor-β (TGF-β)-induced or ATG5, ATG7, and PARK2 knockdown-mediated myofibroblast differentiation in LF were used for in vitro models. The anti-fibrotic role of PFD was examined in a bleomycin (BLM)-induced lung fibrosis model using PARK2 knockout (KO) mice.ResultsWe found that PFD induced autophagy/mitophagy activation via enhanced PARK2 expression, which was partly involved in the inhibition of myofibroblast differentiation in the presence of TGF-β. PFD inhibited the myofibroblast differentiation induced by PARK2 knockdown by reducing mitochondrial ROS and PDGFR-PI3K-Akt activation. BLM-treated PARK2 KO mice demonstrated augmentation of lung fibrosis and oxidative modifications compared to those of BLM-treated wild type mice, which were efficiently attenuated by PFD.ConclusionsThese results suggest that PFD induces PARK2-mediated mitophagy and also inhibits lung fibrosis development in the setting of insufficient mitophagy, which may at least partly explain the anti-fibrotic mechanisms of PFD for IPF treatment.


International Journal of Chronic Obstructive Pulmonary Disease | 2015

Pathogens in COPD exacerbations identified by comprehensive real-time PCR plus older methods

Kenichiro Shimizu; Yutaka Yoshii; Miyuki Morozumi; Naoko Chiba; Kimiko Ubukata; Hironori Uruga; Shigeo Hanada; Nayuta Saito; Tsukasa Kadota; Saburo Ito; Hiroshi Wakui; Naoki Takasaka; Shunsuke Minagawa; Jun Kojima; Hiromichi Hara; Takanori Numata; Makoto Kawaishi; Keisuke Saito; Jun Araya; Yumi Kaneko; Katsutoshi Nakayama; Kazuma Kishi; Kazuyoshi Kuwano

Respiratory infection is a major cause of exacerbation in chronic obstructive pulmonary disease (COPD). Infectious contributions to exacerbations remain incompletely described. We therefore analyzed respiratory tract samples by comprehensive real-time polymerase chain reaction (PCR) in combination with conventional methods. We evaluated multiple risk factors for prolonged hospitalization to manage COPD exacerbations, including infectious agents. Over 19 months, we prospectively studied 46 patients with 50 COPD exacerbations, collecting nasopharyngeal swab and sputum samples from each. We carried out real-time PCR designed to detect six bacterial species and eleven viruses, together with conventional procedures, including sputum culture. Infectious etiologies of COPD exacerbations were identified in 44 of 50 exacerbations (88%). Infections were viral in 17 of 50 exacerbations (34%). COPD exacerbations caused by Gram-negative bacilli, including enteric and nonfermenting organisms, were significantly associated with prolonged hospitalization for COPD exacerbations. Our results support the use of a combination of real-time PCR and conventional methods for determining both infectious etiologies and risk of extended hospitalization.


Infectious diseases | 2016

Identification of pathogens by comprehensive real-time PCR versus conventional methods in community-acquired pneumonia in Japanese adults

Yutaka Yoshii; Kenichiro Shimizu; Miyuki Morozumi; Naoko Chiba; Kimiko Ubukata; Hironori Uruga; Shigeo Hanada; Hiroshi Wakui; Saburo Ito; Naoki Takasaka; Shunsuke Minagawa; Jun Kojima; Takanori Numata; Hiromichi Hara; Makoto Kawaishi; Keisuke Saito; Jun Araya; Yumi Kaneko; Katsutoshi Nakayama; Kazuma Kishi; Kazuyoshi Kuwano

Abstract Background: Community-acquired pneumonia (CAP) has high morbidity and mortality. Unfortunately, the pathogen detection rate using conventional culture methods is relatively low. We compared comprehensive real-time polymerase chain reaction (real-time PCR) analysis of nasopharyngeal swab specimens (NPS) and sputum samples against conventional methods for ability to detect causative pathogens of CAP. Methods: We prospectively enrolled adult CAP patients, including those with prior antibiotic use, from December 2012 to May 2014. For each patient, causative pathogens were investigated conventionally and by real-time PCR that can identify 6 bacterial and 11 viral pathogens. Results: Patients numbered 92 (mean age, 63 years; 59 male), including 30 (33%) with prior antibiotic use. Considering all patients, identification of causative pathogens by real-time PCR was significantly more frequent than by conventional methods in all patients (72% vs. 57%, p = 0.018). In patients with prior antibiotic use, identification rates also differed significantly (PCR, 77%; conventional, 50%; p = 0.027). Mixed infections were more frequent according to real-time PCR than conventional methods (26% vs. 4%, p < 0.001). By the real-time PCR, Streptococcus pneumoniae was most frequently identified (38%) as a causative pathogen, followed by Haemophilus influenzae (37%) and Mycoplasma pneumoniae (5%). PCR also identified viral pathogens (21%), with sensitivity enhanced by simultaneous examination of both NPS and sputum samples rather than only NPS samples. Conclusions: Real-time PCR of NPS and sputum samples could better identify bacterial and viral pathogens in CAP than conventional methods, both overall and in patients with prior antibiotic treatment.


Respirology | 2015

Clinical efficacy of anti-glycopeptidolipid-core IgA test for diagnosing Mycobacterium avium complex infection in lung

Takanori Numata; Jun Araya; Yutaka Yoshii; Kenichiro Shimizu; Hiromichi Hara; Katsutoshi Nakayama; Kazuyoshi Kuwano

It is difficult to verify the bacteriological diagnosis of Mycobacterium avium complex (MAC) infection. The anti‐glycopeptidolipid (GPL)‐core IgA antibody test was recently developed as a diagnostic method for MAC pulmonary disease. Only a few studies evaluate its clinical efficacy. We conducted retrospective evaluations of clinical characteristics of patients suspected of MAC infection to explore the usefulness of the anti‐GPL‐core IgA antibody test.


Autophagy | 2017

Azithromycin attenuates myofibroblast differentiation and lung fibrosis development through proteasomal degradation of NOX4

Kazuya Tsubouchi; Jun Araya; Shunsuke Minagawa; Hiromichi Hara; Akihiro Ichikawa; Nayuta Saito; Tsukasa Kadota; Nahoko Sato; Masahiro Yoshida; Yusuke Kurita; Kenji Kobayashi; Saburo Ito; Yu Fujita; Hirofumi Utsumi; Haruhiko Yanagisawa; Mitsuo Hashimoto; Hiroshi Wakui; Yutaka Yoshii; Takeo Ishikawa; Takanori Numata; Yumi Kaneko; Hisatoshi Asano; Makoto Yamashita; Makoto Odaka; Toshiaki Morikawa; Katsutoshi Nakayama; Yoichi Nakanishi; Kazuyoshi Kuwano

ABSTRACT Accumulation of profibrotic myofibroblasts is involved in the process of fibrosis development during idiopathic pulmonary fibrosis (IPF) pathogenesis. TGFB (transforming growth factor β) is one of the major profibrotic cytokines for myofibroblast differentiation and NOX4 (NADPH oxidase 4) has an essential role in TGFB-mediated cell signaling. Azithromycin (AZM), a second-generation antibacterial macrolide, has a pleiotropic effect on cellular processes including proteostasis. Hence, we hypothesized that AZM may regulate NOX4 levels by modulating proteostasis machineries, resulting in inhibition of TGFB-associated lung fibrosis development. Human lung fibroblasts (LF) were used to evaluate TGFB-induced myofibroblast differentiation. With respect to NOX4 regulation via proteostasis, assays for macroautophagy/autophagy, the unfolded protein response (UPR), and proteasome activity were performed. The potential anti-fibrotic property of AZM was examined by using bleomycin (BLM)-induced lung fibrosis mouse models. TGFB-induced NOX4 and myofibroblast differentiation were clearly inhibited by AZM treatment in LF. AZM-mediated NOX4 reduction was restored by treatment with MG132, a proteasome inhibitor. AZM inhibited autophagy and enhanced the UPR. Autophagy inhibition by AZM was linked to ubiquitination of NOX4 via increased protein levels of STUB1 (STIP1 homology and U-box containing protein 1), an E3 ubiquitin ligase. An increased UPR by AZM was associated with enhanced proteasome activity. AZM suppressed lung fibrosis development induced by BLM with concomitantly reduced NOX4 protein levels and enhanced proteasome activation. These results suggest that AZM suppresses NOX4 by promoting proteasomal degradation, resulting in inhibition of TGFB-induced myofibroblast differentiation and lung fibrosis development. AZM may be a candidate for the treatment of the fibrotic lung disease IPF.


Internal Medicine | 2015

Progressive Diffuse Pulmonary Interstitial Opacities due to Complications of Pulmonary Tumor Emboli: An Autopsy Case Report

Yutaka Yoshii; Yoshinori Kawabata; Noboru Takayanagi; Jun Araya; Kazuyoshi Kuwano; Yutaka Sugita

A 76-year-old man complaining of exertional dyspnea was admitted to our hospital. Chest computed tomography revealed bilateral diffuse ground-glass opacities and small nodules. A transbronchial lung biopsy revealed tumor cell emboli in the pulmonary arteries. The patient was diagnosed with gastric adenocarcinoma using an endoscopic stomach biopsy; however, the interstitial opacities progressively worsened and he died of acute respiratory failure. An autopsy revealed extensive pulmonary tumor embolisms (PTE) with associated ischemic damages, e.g., infarctions, alveolar wall thickening with cuboidal metaplasia, hemorrhage, and diffuse alveolar damage. The ground-glass opacities in the chest computed tomography findings appear to correlate with the pathological ischemic changes associated with PTE.


npj Biofilms and Microbiomes | 2017

Norgestimate inhibits staphylococcal biofilm formation and resensitizes methicillin-resistant Staphylococcus aureus to β-lactam antibiotics

Yutaka Yoshii; Ken-ichi Okuda; Satomi Yamada; Mari Nagakura; Shinya Sugimoto; Tetsuo Nagano; Takayoshi Okabe; Hirotatsu Kojima; Takeo Iwamoto; Kazuyoshi Kuwano; Yoshimitsu Mizunoe

Formation of bacterial biofilms on medical devices can cause severe or fatal infectious diseases. In particular, biofilm-associated infections caused by methicillin-resistant Staphylococcus aureus are difficult to eradicate because the biofilm is strongly resistant to antibiotics and the host immune response. There is no effective treatment for biofilm-associated infectionss, except for surgical removal of contaminated medical devices followed by antibiotic therapy. Here we show that norgestimate, an acetylated progestin, effectively inhibits biofilm formation by staphylococcal strains, including methicillin-resistant S. aureus, without inhibiting their growth, decreasing the selective pressure for emergence of resistance. 17-Deacetyl norgestimate, a metabolite of norgestimate, shows much weaker inhibitory activity against staphylococcal biofilm formation, indicating that the acetyl group of norgestimate is important for its activity. Norgestimate inhibits staphylococcal biofilm formation by inhibiting production of polysaccharide intercellular adhesin and proteins in the extracellular matrix. Proteome analysis of S. aureus indicated that norgestimate represses the expression of the cell wall-anchored protein SasG, which promotes intercellular adhesion, and of the glycolytic enzyme enolase, which plays a secondary role in biofilm formation. Notably, norgestimate induces remarkable changes in cell wall morphology, characterized by increased thickness and abnormal rippled septa. Furthermore, norgestimate increases the expression level of penicillin binding protein 2 and resensitizes methicillin-resistant S. aureus to β-lactam antibiotics. These results suggest that norgestimate is a promising lead compound for the development of drugs to treat biofilm-associated infections, as well as for its ability to resensitize methicillin-resistant S. aureus to β-lactam antibiotics.Biofilm formation: Benefits of selective inhibitionA synthetic molecule related to the hormone progesterone might keep medical devices free of biofilms without promoting antibiotic resistance. Implanted devices that have become contaminated with biofilms generally must be surgically removed prior to treating the underlying infection with antibiotics. Ken-ichi Okuda and colleagues at The Jikei University School of Medicine in Tokyo, with co-workers elsewhere in Japan, found that the synthetic progesterone analog norgestimate inhibits biofilm formation without inhibiting bacterial growth. They regard this selective effect on biofilm formation as a significant advantage, as it reduces the risk of inducing resistance in the targeted bacteria. They demonstrated the effect using staphylococcal bacteria, including the problematic and highly dangerous methicillin-resistant Staphylococcus aureus (MRSA). The research also indicated that norgestimate can resensitize MRSA bacteria to some of the antibiotics they are resistant to.


BMC Pulmonary Medicine | 2017

Detection of pathogens by real-time PCR in adult patients with acute exacerbation of bronchial asthma

Yutaka Yoshii; Kenichiro Shimizu; Miyuki Morozumi; Naoko Chiba; Kimiko Ubukata; Hironori Uruga; Shigeo Hanada; Hiroshi Wakui; Shunsuke Minagawa; Hiromichi Hara; Takanori Numata; Keisuke Saito; Jun Araya; Katsutoshi Nakayama; Kazuma Kishi; Kazuyoshi Kuwano

BackgroundRespiratory tract infection is a major cause of acute exacerbation of bronchial asthma (AEBA). Although recent findings suggest that common bacteria are causally associated with AEBA, a comprehensive epidemiologic analysis of infectious pathogens including common/atypical bacteria and viruses in AEBA has not been performed. Accordingly, we attempted to detect pathogens during AEBA by using real-time polymerase chain reaction (PCR) in comparison to conventional methods.MethodsWe prospectively enroled adult patients with AEBA from August 2012 to March 2014. Infectious pathogens collected in nasopharyngeal swab and sputum samples were examined in each patient by conventional methods and real-time PCR, which can detect 6 bacterial and 11 viral pathogens. The causal association of these pathogens with AEBA severity and their frequency of monthly distribution were also examined.ResultsAmong the 64 enroled patients, infectious pathogens were detected in 49 patients (76.6%) using real-time PCR and in 14 patients (21.9%) using conventional methods (p < 0.001). Real-time PCR detected bacteria in 29 patients (45.3%) and respiratory viruses in 28 patients (43.8%). Haemophilus influenzae was the most frequently detected microorganism (26.6%), followed by rhinovirus (15.6%). Influenza virus was the significant pathogen associated with severe AEBA. Moreover, AEBA occurred most frequently during November to January.ConclusionsReal-time PCR was more useful than conventional methods to detect infectious pathogens in patients with AEBA. Accurate detection of pathogens with real-time PCR may enable the selection of appropriate anti-bacterial/viral agents as a part of the treatment for AEBA.

Collaboration


Dive into the Yutaka Yoshii's collaboration.

Top Co-Authors

Avatar

Kazuyoshi Kuwano

Jikei University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Jun Araya

Jikei University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Kenichiro Shimizu

Jikei University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Katsutoshi Nakayama

Jikei University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Takanori Numata

Jikei University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Hiroshi Wakui

Jikei University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Hiromichi Hara

Jikei University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Makoto Kawaishi

Jikei University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Yumi Kaneko

Jikei University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Jun Kojima

Jikei University School of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge