Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yuto Ueda is active.

Publication


Featured researches published by Yuto Ueda.


Journal of Neurochemistry | 2008

Collapse of extracellular glutamate regulation during epileptogenesis: down-regulation and functional failure of glutamate transporter function in rats with chronic seizures induced by kainic acid

Yuto Ueda; Taku Doi; Jun Tokumaru; Hidekatsu Yokoyama; Akira Nakajima; Yoshio Mitsuyama; Hiroaki Ohya-Nishiguchi; Hitoshi Kamada; L. James Willmore

We used northern and western blotting to measure the quantity of glutamate and GABA transporters mRNA and their proteins within the hippocampal tissue of rats with epileptogenesis. Chronic seizures were induced by amygdalar injection of kainic acid 60 days before death. We found that expression of the mRNA and protein of the glial glutamate transporters GLAST and GLT‐1 were down‐regulated in the kainic acid‐administered group. In contrast, EAAC‐1 and GAT‐3 mRNA and their proteins were increased, while GAT‐1 mRNA and protein were not changed. We performed in vivo microdialysis in the freely moving state. During the interictal state, the extracellular glutamate concentration was increased, whereas the GABA level was decreased in the kainic acid group. Following potassium‐induced depolarization, glutamate overflow was higher and the recovery time to the basal release was prolonged in the kainic acid group relative to controls. Our data suggest that epileptogenesis in rats with kainic acid‐induced chronic seizures is associated with the collapse of extracellular glutamate regulation caused by both molecular down‐regulation and functional failure of glutamate transport.


Molecular Brain Research | 2003

Effect of zonisamide on molecular regulation of glutamate and GABA transporter proteins during epileptogenesis in rats with hippocampal seizures.

Yuto Ueda; Taku Doi; Jun Tokumaru; L. James Willmore

Epileptiform discharges and behavioral seizures may be the consequences of excess excitation associated with the neurotransmitter glutamate, or from inadequate inhibitory effects associated with gamma-aminobutyric acid (GABA). Synaptic effects of these neurotransmitters are terminated by the action of transporter proteins that remove amino acids from the synaptic cleft. Excitation initiated by the synaptic release of glutamate is attenuated by the action of glial transporters glutamate-aspartate transporter (GLAST) and glutamate transporter-1 (GLT-1), and the neuronal transporter excitatory amino-acid carrier-1 (EAAC-1). GABA is removed from synaptic regions by the action of the transporters proteins GABA transporter-1 (GAT-1) and GABA transporter-3 (GAT-3). In this experiment, albino rats with chronic, spontaneous recurrent seizures induced by the amygdalar injection of FeCl3 were treated for 14 days with zonisamide (ZNS) (40 mg/kg, i.p.). Control animals underwent saline injection into the same amygdalar regions. Treatment control for both groups of intracerebrally injected animals was i.p. injection of equal volumes of saline. Western blotting was used to measure the quantity of glutamate and GABA transporters in hippocampus and frontal cortex. ZNS caused increase in the quantity of EAAC-1 protein in hippocampus and cortex and down regulation of the GABA transporter GAT-1. These changes occurred in both experimental and ZNS treated control animals. These data show that the molecular effect of ZNS, with up-regulation of EAAC-1 and decreased production of GABA transporters, should result in increased tissue and synaptic concentrations of GABA. Although many antiepileptic drugs have effects on ion channels when measured in vitro our study suggests that additional mechanisms of action may be operant. Molecular effects on regulation of transporter proteins may aid in understanding epileptogenesis and inform investigators about future design and development of drugs to treat epilepsy.


Epilepsy Research | 1997

Generation of lipid radicals in the hippocampal extracellular space during kainic acid-induced seizures in rats

Yuto Ueda; Hidekatsu Yokoyama; R Niwa; Ryusei Konaka; H Ohya-Nishiguchi; H Kamada

We report direct electron spin resonance (ESR) evidence of extracellular free radical formation during kainic acid-induced seizures obtained using in vivo brain microdialysis in freely moving rats. Saline solution containing the spin trap agent alpha-(4-pyridyl-N-oxide)-N-tert-butylnitrone was perfused through the hippocampus. ESR analysis of the dialysate samples revealed a six-line spectra, for which the hyperfine coupling constants corresponded to those of the ESR signal from the lipoxygenase/linoleic acid system, a lipid radical generating system. This result is direct evidence that lipid peroxidation of the neuronal membrane progresses during seizure activity. Increased formation of lipid radicals may participate in the cascade of reactions leading to neuronal damage in the hippocampus following kainic acid-induced seizure activity.


Free Radical Biology and Medicine | 1999

EPR imaging for in vivo analysis of the half-life of a nitroxide radical in the hippocampus and cerebral cortex of rats after epileptic seizures.

Hidekatsu Yokoyama; Yijing Lin; Osamu Itoh; Yuto Ueda; Akira Nakajima; Tateaki Ogata; Toshiyuki Sato; Hiroaki Ohya-Nishiguchi; Hitoshi Kamada

Recently, we developed an in vivo temporal electron paramagnetic resonance (EPR) imaging technique to be applied to the brain of a rat, into which a blood-brain barrier (BBB)-permeable nitroxide radical, 3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine-1-oxyl (PCAM) was injected intraperitoneally. This imaging technique made it possible to measure decay rates of a nitroxide radical in multiple regions of the brain simultaneously. Using this technique, the half-life of PCAM was estimated from the exponential decay of the signal intensity derived from the temporal EPR images in the hippocampus and cerebral cortex of rats after a kainic acid (KA)-induced seizure. The hippocampal half-life of PCAM after KA-induced seizures was significantly prolonged (p < .01), whereas the prolongation of the cortical half-life was not significant. These findings suggest that following a KA-seizure, the intrahippocampal ability to reduce the nitroxide radical is impaired, but the ability is intact in the cerebral cortex. This is the first in vivo quantitative EPR imaging study that has a bearing on the pathogenesis of KA-induced seizures in the brain.


Free Radical Biology and Medicine | 1998

In vivo analysis of hydrogen peroxide and lipid radicals in the striatum of rats under long-term administration of a neuroleptic.

Hidekatsu Yokoyama; Nahoko Kasai; Yuto Ueda; Ryuji Niwa; Ryusei Konaka; Norio Mori; Nobuaki Tsuchihashi; Tomokazu Matsue; Hiroaki Ohya-Nishiguchi; Hitoshi Kamada

It has been hypothesized that free radicals play a causative role in tardive dyskinesia, which is an inveterate movement disorder caused by chronic administration of neuroleptics. To verify this hypothesis, rats were reared while being regularly treated with water containing a neuroleptic, haloperidol (HPD), for 1 year (HPD group). The changes in the striatal hydrogen peroxide content of the rats in the HPD and control groups were measured by using a Pt-disk microelectrode while the animals were in a freely moving state following intraperitoneal administration of HPD (HPD challenge). We also performed electron spin resonance (ESR) detection of lipid radicals in the striatum before the HPD challenge. HPD challenge led to significant elevation of the intrastriatal hydrogen peroxide in all animals, but the elevation in the HPD group was smaller than that in the control group. However, in the HPD group, marked ESR signals of intrastriatal lipid radicals were observed. We think that these results support the hypothesis on the role of free radicals in tardive dyskinesia.


Epilepsy Research | 2000

Sequential changes in glutamate transporter protein levels during Fe3+-induced epileptogenesis

Yuto Ueda; L. James Willmore

Severe head injury in humans causes recurrent seizures; this form of epilepsy appears to correlate with occurrence of parenchymal hemorrhage. Injection of ferric cations, one component of hemoglobin, into rat amygdala, causes lipid peroxidation, and recurrent spontaneous seizures. We wondered whether regulation of extracellular glutamate might be perturbed as a mechanism of chronic epileptogenesis, therefore levels of glutamate transporter proteins GLT-1, GLAST and EAAC-1 were measured in ipsilateral and contralateral hippocampi removed from rats having spontaneous iron-induced limbic seizures. The neuronal transporter EAAC-1 was elevated bilaterally up to 30 days following the microinjection that initiated seizures. The neuronal transporter EAAC-1 was elevated bilaterally up to 30 days following the microinjection that initiated seizures. The glial transporter GLT-1 increased 5 and 15 days after iron injection on the side contralateral to the injection then returned to basal levels 30 days after the lesion. GLAST also showed an initial increase but at 15 and 30 days after injection, when experimental animals were experiencing spontaneous limbic behavioral seizures, this protein was down-regulated. The results suggest that iron-induced epileptogenesis involves alteration in glial glutamate transport that may lead to enhanced excitation within the hippocampus.


Journal of Neurochemistry | 2009

Increased lipid peroxidation in Down’s syndrome mouse models

Keiichi Ishihara; Kenji Amano; Eiichi Takaki; Abdul Shukkur Ebrahim; Atsushi Shimohata; Noriko Shibazaki; Ikuyo Inoue; Mayuko Takaki; Yuto Ueda; Haruhiko Sago; Charles J. Epstein; Kazuhiro Yamakawa

Elevated oxidative stress has been suggested to be associated with the features of Down’s syndrome (DS). We previously reported increased oxidative stress in cultured cells from the embryonic brain of Ts1Cje, a mouse genetic DS model. However, since in vivo evidence for increased oxidative stress is lacking, we here examined lipid peroxidation, a typical marker of oxidative stress, in the brains of Ts1Cje and another DS mouse model Ts2Cje with an overlapping but larger trisomic segment. Accumulations of proteins modified with the lipid peroxidation‐derived products, 13‐hydroperoxy‐9Z,11E‐octadecadienoic acid and 4‐hydroxy‐2‐nonenal were markedly increased in Ts1Cje and Ts2Cje brains. Analysis with oxidation‐sensitive fluorescent probe also showed that reactive oxygen species themselves were increased in Ts1Cje brain. However, electron spin resonance analysis of microdialysate from the hippocampus of Ts1Cje showed that antioxidant activity remained unaffected, suggesting that the reactive oxygen species production was accelerated in Ts1Cje. Proteomics approaches with mass spectrometry identified the proteins modified with 13‐hydroperoxy‐9Z,11E‐octadecadienoic acid and/or 4‐hydroxy‐2‐nonenal to be involved in either ATP generation, the neuronal cytoskeleton or antioxidant activity. Structural or functional impairments of these proteins by such modifications may contribute to the DS features such as cognitive impairment that are present in the Ts1Cje mouse.


Brain Research | 2009

Levetiracetam enhances endogenous antioxidant in the hippocampus of rats: In vivo evaluation by brain microdialysis combined with ESR spectroscopy

Yuto Ueda; Taku Doi; Mayuko Takaki; Keiko Nagatomo; Akira Nakajima; L. James Willmore

We have attempted to explore the neuroprotective effectiveness of levetiracetam (LEV) by measuring its in vivo antioxidant effect in the hippocampus of rats in a freely moving state. Male Wistar rats were used for the estimation of the in vivo antioxidant effect of LEV through microdialysis combined with electron spin resonance spectroscopy. The antioxidant effect was examined using the principle by which a systemically administered blood-brain barrier-permeable nitroxide radical (PCAM) decreases in an exponential decay manner that is correlated with the amount of antioxidant in the brain. The PCAM decay ratio during perfusion with normal Ringers solution was compared with that during 32 microM and 100 microM LEV co-perfusion. The in vivo antioxidant effect was examined. In addition, the expressions of the cystine/glutamate exchanger (xCT) and the inducible nitric oxide synthase (iNOS) protein related to redox regulation were measured in the hippocampus of rats after 14 days of administration of LEV at a dose of 54 mg/day i.p. The half-life of PCAM was statistically shortened after LEV perfusion compared with the results of the control experiment. While the expression of the pro-oxidant protein iNOS was decreased, that of the antioxidant protein xCT was statistically increased by the administration of LEV. The role of xCT is to transport cystine, the internal material of glutathione, into the cell. The shortened half-life of the nitroxide radical by co-perfusion of LEV with increased xCT and decreased iNOS expression revealed the enhancement of the endogenous antioxidant effect or free-radical scavenging activity. The results of this study suggest that LEV synergistically enhances the basal endogenous antioxidant effect in the hippocampus with ascorbic acid and alpha-tocopherol. Our findings further suggest that LEV exerts a neuroprotective role by 1) modifying the expression of xCT and iNOS in connection with lipid peroxidation, 2) synergistically enhancing the increased basal endogenous antioxidant ability in the hippocampus, and 3) decreasing the basal concentration of glutamate followed by up-regulation of the intake of cystine, an internal material of GSH.


Neurochemical Research | 2009

Posttraumatic Epilepsy: Hemorrhage, Free Radicals and the Molecular Regulation of Glutamate

L. J. Willmore; Yuto Ueda

Traumatic brain injury causes development of posttraumatic epilepsy. Bleeding within neuropil is followed by hemolysis and deposition of hemoglobin in neocortex. Iron from hemoglobin and transferring is deposited in brains of patients with posttraumatic epilepsy. Iron compounds form reactive free radical oxidants. Microinjection of ferric ions into rodent brain results in chronic recurrent seizures and liberation of glutamate into the neuropil, as is observed in humans with epilepsy. Termination of synaptic effects of glutamate is by removal via transporter proteins. EAAC-1 is within neurons while GLT-1 and GLAST are confined to glia. Persistent down regulation of GLAST production is present in hippocampal regions in chronic seizure models. Down regulation of GLAST may be fundamental to a sequence of free radical reactions initiated by brain injury with hemorrhage. Administration of antioxidants to animals causes interruption of the sequence of brain injury responses induced by hemorrhage, suggesting that such a strategy needs to be evaluated in patients with traumatic brain injury.


Brain Research | 2007

Effect of levetiracetam on molecular regulation of hippocampal glutamate and GABA transporters in rats with chronic seizures induced by amygdalar FeCl3 injection

Yuto Ueda; Taku Doi; Keiko Nagatomo; Jun Tokumaru; Mayuko Takaki; L. James Willmore

Enhancement of the glutamatergic excitatory synaptic transmission efficacy in the FeCl3 induced epilepsy model is associated with changes in the levels of glutamate and GABA transporter proteins. This study examined the effect of levetiracetam (LEV) on glutamate overflow and glutamate/GABA transporters expression in rats with epileptogenesis induced by the amygdalar injection of 1.0 microl of 100 mM FeCl3 (epileptic rat) and in control rats receiving amygdalar acidic saline injection (non-epileptic rat). In amygdalar acidic saline injected rats, 40 mM KCl-evoked glutamate overflow was significantly suppressed by both 32 and 100 microM LEV co-perfusion. In unilateral amygdalar FeCl3 injected rats, 32 microM LEV was ineffective, but the 100 microM LEV statistically suppressed glutamate overflow. Western blotting was employed to determine the hippocampal expression of glutamate/GABA transporters in epileptic or non-epileptic rats. The rats were treated for 14 days with 54 mg/kg LEV or vehicle intraperitoneally injection. Following 14 days of treatment, the ipsilateral hippocampus was removed for a Western blot analysis. In non-epileptic rats, the expression increased for all of the glutamate and GABA transporters (GLAST, GLT-1, EAAC-1, GAT-1 and GAT-3) while the glutamate transporter regulating protein (GTRAP3-18) decreased in comparison to those of normal rats that were treated with the vehicle. In epileptic rats receiving LEV, the EAAC-1 and GAT-3 levels increased while GTRAP3-18 (89%) decreased in comparison to those of the epileptic rats treated with the vehicle. GTRAP3-18 inhibitor regulates glutamate-binding affinity to EAAC-1. The anti-epileptic action of LEV may be partially due to a reduction of glutamate-induced excitotoxicity and an enhancement of the GABAergic inhibition as observed with the inhibitory effect on the 40 mM KCl-evoked glutamate overflow. These conclusions are supported by the increase in the expression of glial glutamate transporters (GLAST and GLT-1), and the increase in the expression of EAAC-1 and GAT-3 associated with a decrease in GTRAP3-18. The increased expression of EAAC-1 and the decreased expression of GTRAP3-18 in association with the up-regulation of GAT-3 due to such continual LEV administration was thus found to enhance GABA synthesis and reverse the transport of GABA both in non-epileptic and epileptic rats. The suppression of glutamate excitation and the enhancement of GABA inhibition in the rats with continual LEV administration is a result of the up-regulation of glutamate and GABA transporters with the down-regulation of GTRAP3-18. These observations together demonstrated the critical molecular mechanism of the anti-epileptic activity of LEV.

Collaboration


Dive into the Yuto Ueda's collaboration.

Top Co-Authors

Avatar

Taku Doi

University of Miyazaki

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hidekatsu Yokoyama

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge