Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yuuki Obata is active.

Publication


Featured researches published by Yuuki Obata.


Nature | 2013

Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells

Yukihiro Furusawa; Yuuki Obata; Shinji Fukuda; Takaho A. Endo; Gaku Nakato; Daisuke Takahashi; Yumiko Nakanishi; Chikako Uetake; Keiko Kato; Tamotsu Kato; Masumi Takahashi; Noriko N. Fukuda; Shinnosuke Murakami; Eiji Miyauchi; Shingo Hino; Koji Atarashi; Satoshi Onawa; Yumiko Fujimura; Trevor Lockett; Julie M. Clarke; David L. Topping; Masaru Tomita; Shohei Hori; Osamu Ohara; Tatsuya Morita; Haruhiko Koseki; Jun Kikuchi; Kenya Honda; Koji Hase; Hiroshi Ohno

Gut commensal microbes shape the mucosal immune system by regulating the differentiation and expansion of several types of T cell. Clostridia, a dominant class of commensal microbe, can induce colonic regulatory T (Treg) cells, which have a central role in the suppression of inflammatory and allergic responses. However, the molecular mechanisms by which commensal microbes induce colonic Treg cells have been unclear. Here we show that a large bowel microbial fermentation product, butyrate, induces the differentiation of colonic Treg cells in mice. A comparative NMR-based metabolome analysis suggests that the luminal concentrations of short-chain fatty acids positively correlates with the number of Treg cells in the colon. Among short-chain fatty acids, butyrate induced the differentiation of Treg cells in vitro and in vivo, and ameliorated the development of colitis induced by adoptive transfer of CD4+ CD45RBhi T cells in Rag1−/− mice. Treatment of naive T cells under the Treg-cell-polarizing conditions with butyrate enhanced histone H3 acetylation in the promoter and conserved non-coding sequence regions of the Foxp3 locus, suggesting a possible mechanism for how microbial-derived butyrate regulates the differentiation of Treg cells. Our findings provide new insight into the mechanisms by which host–microbe interactions establish immunological homeostasis in the gut.


Science | 2015

The microbiota regulates type 2 immunity through RORγt+ T cells

Caspar Ohnmacht; Joo Hong Park; Sascha Cording; James B. Wing; Koji Atarashi; Yuuki Obata; Valérie Gaboriau-Routhiau; Rute Marques; Sophie Dulauroy; Maria Fedoseeva; Meinrad Busslinger; Nadine Cerf-Bensussan; Ivo G. Boneca; David Voehringer; Koji Hase; Kenya Honda; Shimon Sakaguchi; Gérard Eberl

Gut microbes make T cells keep the peace Our guts harbor trillions of microbial inhabitants, some of which regulate the types of immune cells that are present in the gut. For instance, Clostridium species of bacteria induce a type of T cell that promotes tolerance between the host and its microbial contents. Ohnmacht et al. and Sefik et al. characterized a population of gut regulatory T cells in mice, which required gut microbiota to survive. Multiple bacterial species of the microbiota could induce transcription factor–expressing regulatory T cells that helped maintain immune homeostasis. Mice engineered to lack these transcription factors exhibited enhanced susceptibility to colonic inflammation and had elevated amounts of proinflammatory molecules associated with allergies (see the Perspective by Hegazy and Powrie). Science, this issue pp. 989 and 993 Microbes resident in the gut induce an immunoregulatory population of T cells that promote immune homeostasis. [Also see Perspective by Hegazy and Powrie] Changes to the symbiotic microbiota early in life, or the absence of it, can lead to exacerbated type 2 immunity and allergic inflammations. Although it is unclear how the microbiota regulates type 2 immunity, it is a strong inducer of proinflammatory T helper 17 (TH17) cells and regulatory T cells (Tregs) in the intestine. Here, we report that microbiota-induced Tregs express the nuclear hormone receptor RORγt and differentiate along a pathway that also leads to TH17 cells. In the absence of RORγt+ Tregs, TH2-driven defense against helminths is more efficient, whereas TH2-associated pathology is exacerbated. Thus, the microbiota regulates type 2 responses through the induction of type 3 RORγt+ Tregs and TH17 cells and acts as a key factor in balancing immune responses at mucosal surfaces.


Journal of Cell Science | 2009

Differential trafficking of Src, Lyn, Yes and Fyn is specified by the state of palmitoylation in the SH4 domain.

Izumi Sato; Yuuki Obata; Kousuke Kasahara; Yuji Nakayama; Yasunori Fukumoto; Takahito Yamasaki; Kazunari K. Yokoyama; Takashi Saito; Naoto Yamaguchi

Src-family tyrosine kinases (SFKs), which participate in a variety of signal transduction events, are known to localize to the cytoplasmic face of the plasma membrane through lipid modification. Recently, we showed that Lyn, an SFK member, is exocytosed to the plasma membrane via the Golgi region along the secretory pathway. We show here that SFK trafficking is specified by the palmitoylation state. Yes is also a monopalmitoylated SFK and is biosynthetically transported from the Golgi pool of caveolin to the plasma membrane. This pathway can be inhibited in the trans-Golgi network (TGN)-to-cell surface delivery by temperature block at 19°C or dominant-negative Rab11 GTPase. A large fraction of Fyn, a dually palmitoylated SFK, is directly targeted to the plasma membrane irrespective of temperature block of TGN exit. Fyn(C6S), which lacks the second palmitoylation site, is able to traffic in the same way as Lyn and Yes. Moreover, construction of Yes(S6C) and chimeric Lyn or Yes with the Fyn N-terminus further substantiates the importance of the dual palmitoylation site for plasma membrane targeting. Taken together with our recent finding that Src, a nonpalmitoylated SFK, is rapidly exchanged between the plasma membrane and late endosomes/lysosomes, these results suggest that SFK trafficking is specified by the palmitoylation state in the SH4 domain.


Nature Immunology | 2014

The epigenetic regulator Uhrf1 facilitates the proliferation and maturation of colonic regulatory T cells

Yuuki Obata; Yukihiro Furusawa; Takaho A. Endo; Jafar Sharif; Daisuke Takahashi; Koji Atarashi; Manabu Nakayama; Satoshi Onawa; Yumiko Fujimura; Masumi Takahashi; Tomokatsu Ikawa; Takeshi Otsubo; Yuki I. Kawamura; Taeko Dohi; Shoji Tajima; Hiroshi Masumoto; Osamu Ohara; Kenya Honda; Shohei Hori; Hiroshi Ohno; Haruhiko Koseki; Koji Hase

Intestinal regulatory T cells (Treg cells) are necessary for the suppression of excessive immune responses to commensal bacteria. However, the molecular machinery that controls the homeostasis of intestinal Treg cells has remained largely unknown. Here we report that colonization of germ-free mice with gut microbiota upregulated expression of the DNA-methylation adaptor Uhrf1 in Treg cells. Mice with T cell–specific deficiency in Uhrf1 (Uhrf1fl/flCd4-Cre mice) showed defective proliferation and functional maturation of colonic Treg cells. Uhrf1 deficiency resulted in derepression of the gene (Cdkn1a) that encodes the cyclin-dependent kinase inhibitor p21 due to hypomethylation of its promoter region, which resulted in cell-cycle arrest of Treg cells. As a consequence, Uhrf1fl/flCd4-Cre mice spontaneously developed severe colitis. Thus, Uhrf1-dependent epigenetic silencing of Cdkn1a was required for the maintenance of gut immunological homeostasis. This mechanism enforces symbiotic host-microbe interactions without an inflammatory response.


Journal of Biological Chemistry | 2015

Signaling through the Phosphatidylinositol 3-Kinase (PI3K)/Mammalian Target of Rapamycin (mTOR) Axis Is Responsible for Aerobic Glycolysis mediated by Glucose Transporter in Epidermal Growth Factor Receptor (EGFR)-mutated Lung Adenocarcinoma

Hideki Makinoshima; Masahiro Takita; Koichi Saruwatari; Shigeki Umemura; Yuuki Obata; Genichiro Ishii; Shingo Matsumoto; Eri Sugiyama; Atsushi Ochiai; Ryo Abe; Koichi Goto; Hiroyasu Esumi; Katsuya Tsuchihara

Background: EGFR signaling maintains aerobic glycolysis, but the molecular mechanism is still undefined. Results: Drug inhibition studies reveal that downstream signaling via the PI3K pathway is critical for glucose transport and metabolism. Conclusion: The PI3K signaling regulates key metabolic activities in EGFR-mutant lung adenocarcinoma. Significance: These data may guide the development of chemotherapeutic options, including targeting of the PI3K pathway and glucose transporter machinery. Oncogenic epidermal growth factor receptor (EGFR) signaling plays an important role in regulating global metabolic pathways, including aerobic glycolysis, the pentose phosphate pathway (PPP), and pyrimidine biosynthesis. However, the molecular mechanism by which EGFR signaling regulates cancer cell metabolism is still unclear. To elucidate how EGFR signaling is linked to metabolic activity, we investigated the involvement of the RAS/MEK/ERK and PI3K/AKT/mammalian target of rapamycin (mTOR) pathways on metabolic alteration in lung adenocarcinoma (LAD) cell lines with activating EGFR mutations. Although MEK inhibition did not alter lactate production and the extracellular acidification rate, PI3K/mTOR inhibitors significantly suppressed glycolysis in EGFR-mutant LAD cells. Moreover, a comprehensive metabolomics analysis revealed that the levels of glucose 6-phosphate and 6-phosphogluconate as early metabolites in glycolysis and PPP were decreased after inhibition of the PI3K/AKT/mTOR pathway, suggesting a link between PI3K signaling and the proper function of glucose transporters or hexokinases in glycolysis. Indeed, PI3K/mTOR inhibition effectively suppressed membrane localization of facilitative glucose transporter 1 (GLUT1), which, instead, accumulated in the cytoplasm. Finally, aerobic glycolysis and cell proliferation were down-regulated when GLUT1 gene expression was suppressed by RNAi. Taken together, these results suggest that PI3K/AKT/mTOR signaling is indispensable for the regulation of aerobic glycolysis in EGFR-mutated LAD cells.


Mucosal Immunology | 2015

Unique lamina propria stromal cells imprint the functional phenotype of mucosal dendritic cells

Ildefonso Vicente-Suarez; Alexandre Larange; Colin Reardon; Michael H. Matho; Sonia Feau; Grzegorz Chodaczek; Yunji Park; Yuuki Obata; Rebecca Gold; Yiran Wang-Zhu; Chris Lena; Dirk M. Zajonc; Stephen P. Schoenberger; Mitchell Kronenberg; Hilde Cheroutre

Mucosal dendritic cells (DCs) in the intestine acquire the unique capacity to produce retinoic acid (RA), a vitamin A metabolite that induces gut tropism and regulates the functional differentiation of the T cells they prime. Here, we identified a stromal cell (SC) population in the intestinal lamina propria (LP), which is capable of inducing RA production in DCs in a RA- and granulocyte-macrophage colony-stimulating factor (GM-CSF)-dependent fashion. Unlike DCs, LP SCs constitutively expressed the enzymatic machinery to produce RA even in the absence of dietary vitamin A, but were not able to do so in germ-free mice implying regulation by microbiota. Interestingly, DCs promoted GM-CSF production by the SCs indicating a two-way cross-talk between both cell types. Furthermore, RA-producing LP SCs and intestinal DCs localized closely in vivo suggesting that the interactions between both cell types might have an important role in the functional education of migratory DCs and therefore in the regulation of immune responses toward oral and commensal antigens.


Journal of Immunology | 2012

Epithelial cell-intrinsic Notch signaling plays an essential role in the maintenance of gut immune homeostasis.

Yuuki Obata; Daisuke Takahashi; Masashi Ebisawa; Kisa Kakiguchi; Shigenobu Yonemura; Toshi Jinnohara; Takashi Kanaya; Yumiko Fujimura; Masumi Ohmae; Koji Hase; Hiroshi Ohno

Intestinal epithelial cells (IECs) have important functions as the first line of defense against diverse microorganisms on the luminal surface. Impaired integrity of IEC has been implicated in increasing the risk for inflammatory disorders in the gut. Notch signaling plays a critical role in the maintenance of epithelial integrity by regulating the balance of secretory and absorptive cell lineages, and also by facilitating epithelial cell proliferation. We show in this article that mice harboring IEC-specific deletion of Rbpj (RBP-JΔIEC), a transcription factor that mediates signaling through Notch receptors, spontaneously develop chronic colitis characterized by the accumulation of Th17 cells in colonic lamina propria. Intestinal bacteria are responsible for the development of colitis, because their depletion with antibiotics prevented the development of colitis in RBP-JΔIEC mice. Furthermore, bacterial translocation was evident in the colonic mucosa of RBP-JΔIEC mice before the onset of colitis, suggesting attenuated epithelial barrier functions in these mice. Indeed, RBP-JΔIEC mice displayed increase in intestinal permeability after rectal administration of FITC-dextran. In addition to the defect in physical barrier, loss of Notch signaling led to arrest of epithelial cell turnover caused by downregulation of Hes1, a transcriptional repressor of p27Kip1 and p57Kip2. Thus, epithelial cell-intrinsic Notch signaling ensures integrity and homeostasis of IEC, and this mechanism is required for containment of intestinal inflammation.


Seminars in Immunopathology | 2015

Commensal microbiota regulates T cell fate decision in the gut

Yukihiro Furusawa; Yuuki Obata; Koji Hase

Commensal microbiota shapes the intestinal immune system by regulating T helper (TH) cell lineage differentiation. For example, Bacteroides fragilis colonization not only optimizes the systemic TH1/TH2 balance, but also can induce regulatory T (Treg) cell differentiation in the gut. In addition, segmented filamentous bacteria (SFB) facilitate the development of TH17 cells in the small intestine. The 17 strains within clusters IV, XIVa, and XVIII of Clostridiales found in human feces can also induce the differentiation and expansion of Treg cells in the colon. Thus, the regulation of TH cell differentiation by commensal bacteria is evident; however, the molecular mechanisms underlying these processes remain uncertain. Recent studies have demonstrated that bacterial components, as well as their metabolites, play a central role in regulating TH cell development. Furthermore, these metabolites can elicit changes in histone posttranslational modification to modify the expression of critical regulators of T cell fate. In this review, we discuss the mechanisms and biological significance of microbiota-dependent TH differentiation.


Experimental Cell Research | 2009

Bleomycin-induced over-replication involves sustained inhibition of mitotic entry through the ATM/ATR pathway

Yuji Nakayama; Asae Igarashi; Ikue Kikuchi; Yuuki Obata; Yasunori Fukumoto; Naoto Yamaguchi

Polyploid cells result in aneuploidy through aberrant chromosome segregation, possibly leading to tumorigenesis. Although polyploid cells are induced through over-replication by a variety of agents, including DNA-damaging drugs, the mechanisms that induce polyploidy have been hitherto unknown. Here, we show that treatment with bleomycin, a glycopeptide anticancer drug, induces over-replication at low cytotoxic doses. During bleomycin-induced over-replication, mitotic entry is inhibited through tyrosine phosphorylation of CDK1 along the ATM/ATR pathway in the early phase of treatment. Bleomycin-induced over-replication is inhibited by the inhibitors of the ATM/ATR pathway through abrogation of bleomycin-induced G2 arrest, and the ATM/ATR inhibitors promote cell death instead of over-replication. Following the phosphorylation of CDK1, the level of cyclin B1 is decreased in the late phase of treatment. Time-lapse imaging of clone cells that express a live cell marker of endogenous cyclin B1 revealed that cyclin B1 is degraded in G2-arrested cells upon bleomycin treatment. Our findings lead to a model of how the ATM/ATR pathway acts as a molecular switch for regulating cell fates, flipping between cell death via progress into mitosis, and over-replication via sustained G2 arrest upon DNA damage, where cyclin B1 degradation is an important factor for inducing over-replication.


Immunology and Cell Biology | 2015

Epigenetic modifications of the immune system in health and disease

Yuuki Obata; Yukihiro Furusawa; Koji Hase

Vertebrate animals have developed sophisticated host defense mechanisms against potentially hostile antigens. These mechanisms mainly involve the immune system and the epithelial cells that cover the body surface. Accumulating studies have revealed that epigenetic mechanisms in collaboration with signal transduction networks regulate gene expression over the course of differentiation, proliferation and function of immune and epithelial cells. The epigenetic status of these cells is fine‐tuned under physiological conditions; however, its disturbance often results in the development of immunological disorders, namely inflammation. Certain environmental factors influence the differentiation and function of immune cells through epigenetic alterations. For example, commensal microbiota‐derived metabolites inhibit histone deacetylases to induce regulatory T cells, whereas some infectious agents induce DNA methylation, resulting in the development of cancer. These data imply that epigenetic regulation of host defense cells, which are usually the first to encounter external antigens, is implicated in disease development. Here, we highlight recent advances in our understanding of the molecular mechanisms by which the epigenetic status of immune and epithelial cells is controlled.

Collaboration


Dive into the Yuuki Obata's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hiroshi Ohno

Yokohama City University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yuji Nakayama

Kyoto Pharmaceutical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gaku Nakato

Yokohama City University

View shared research outputs
Researchain Logo
Decentralizing Knowledge