Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yuuki Shimizu is active.

Publication


Featured researches published by Yuuki Shimizu.


Journal of Biological Chemistry | 2012

CTRP9 Protein Protects against Myocardial Injury following Ischemia-Reperfusion through AMP-activated Protein Kinase (AMPK)-dependent Mechanism

Takahiro Kambara; Koji Ohashi; Rei Shibata; Yasuhiro Ogura; Sonomi Maruyama; Takashi Enomoto; Yusuke Uemura; Yuuki Shimizu; Daisuke Yuasa; Kazuhiro Matsuo; Megumi Miyabe; Yoshiyuki Kataoka; Toyoaki Murohara; Noriyuki Ouchi

Background: The functional role of the fat-derived plasma protein CTRP9 in ischemic heart disease is unknown. Results: Systemic delivery of CTRP9 reduces myocardial infarct size and apoptosis following ischemia-reperfusion in mice. CTRP9 protects cardiomyocyte from apoptosis through activation of AMP-activated protein kinase (AMPK). Conclusion: CTRP9 prevents acute cardiac ischemic injury via an AMPK-dependent mechanism. Significance: CTRP9 represents a novel target molecule for manipulation of myocardial ischemic injury. Ischemic heart disease is the major cause of death in Western countries. CTRP9 (C1q/TNF-related protein 9) is a fat-derived plasma protein that has salutary effects on glucose metabolism and vascular function. However, the functional role of CTRP9 in ischemic heart disease has not been clarified. Here, we examined the regulation of CTRP9 in response to acute cardiac injury and investigated whether CTRP9 modulates cardiac damage after ischemia and reperfusion. Myocardial ischemia-reperfusion injury resulted in reduced plasma CTRP9 levels and increased plasma free fatty acid levels, which were accompanied by a decrease in CTRP9 expression and an increase in NADPH oxidase component expression in fat tissue. Treatment of cultured adipocytes with palmitic acid or hydrogen peroxide reduced CTRP9 expression. Systemic administration of CTRP9 to wild-type mice, before the induction of ischemia or at the time of reperfusion, led to a reduction in myocardial infarct size following ischemia-reperfusion. Administration of CTRP9 also attenuated myocyte apoptosis in ischemic heart, which was accompanied by increased phosphorylation of AMP-activated protein kinase (AMPK). Treatment of cardiac myocytes with CTRP9 protein reduced apoptosis in response to hypoxia/reoxygenation and stimulated AMPK phosphorylation. Blockade of AMPK activity reversed the suppressive actions of CTRP9 on cardiomyocyte apoptosis. Knockdown of adiponectin receptor 1 diminished CTRP9-induced increases in AMPK phosphorylation and survival of cardiac myocytes. Our data suggest that CTRP9 protects against acute cardiac injury following ischemia-reperfusion via an AMPK-dependent mechanism.


Nitric Oxide | 2015

Hydrogen sulfide attenuates high fat diet-induced cardiac dysfunction via the suppression of endoplasmic reticulum stress

Larry A. Barr; Yuuki Shimizu; Jonathan P. Lambert; Chad K. Nicholson; John W. Calvert

Diabetic cardiomyopathy is a significant contributor to the morbidity and mortality associated with diabetes and metabolic syndrome. However, the underlying molecular mechanisms that lead to its development have not been fully elucidated. Hydrogen sulfide (H2S) is an endogenously produced signaling molecule that is critical for the regulation of cardiovascular homeostasis. Recently, therapeutic strategies aimed at increasing its levels have proven cardioprotective in models of acute myocardial ischemia-reperfusion injury and heart failure. The precise role of H2S in the pathogenesis of diabetic cardiomyopathy has not yet been established. Therefore, the goal of the present study was to evaluate circulating and cardiac H2S levels in a murine model of high fat diet (HFD)-induced cardiomyopathy. Diabetic cardiomyopathy was produced by feeding mice HFD (60% fat) chow for 24 weeks. HFD feeding reduced both circulating and cardiac H2S and induced hallmark features of type-2 diabetes. We also observed marked cardiac dysfunction, evidence of cardiac enlargement, cardiac hypertrophy, and fibrosis. H2S therapy (SG-1002, an orally active H2S donor) restored sulfide levels, improved some of the metabolic perturbations stemming from HFD feeding, and attenuated HFD-induced cardiac dysfunction. Additional analysis revealed that H2S therapy restored adiponectin levels and suppressed cardiac ER stress stemming from HFD feeding. These results suggest that diminished circulating and cardiac H2S levels play a role in the pathophysiology of HFD-induced cardiomyopathy. Additionally, these results suggest that H2S therapy may be of clinical importance in the treatment of cardiovascular complications stemming from diabetes.


Journal of Biological Chemistry | 2014

Vildagliptin Stimulates Endothelial Cell Network Formation and Ischemia-induced Revascularization via an Endothelial Nitric-oxide Synthase-dependent Mechanism

Masakazu Ishii; Rei Shibata; Kazuhisa Kondo; Takahiro Kambara; Yuuki Shimizu; Tohru Tanigawa; Yasuko Bando; Masahiro Nishimura; Noriyuki Ouchi; Toyoaki Murohara

Background: DPP-4 inhibitors exert pleiotropic effects that modulate cardiovascular disease. Results: The DPP-4 inhibitor vildagliptin stimulates ischemia-induced revascularization through eNOS signaling. The angiogenic actions of vildagliptin are mediated by both GLP-1-dependent and -independent mechanisms. Conclusion: DPP-4 inhibitor promotes endothelial cell function via eNOS signaling. Significance: DPP-4 inhibitor could be beneficial in patients with diabetes-related vascular complications. Dipeptidyl peptidase-4 inhibitors are known to lower glucose levels and are also beneficial in the management of cardiovascular disease. Here, we investigated whether a dipeptidyl peptidase-4 inhibitor, vildagliptin, modulates endothelial cell network formation and revascularization processes in vitro and in vivo. Treatment with vildagliptin enhanced blood flow recovery and capillary density in the ischemic limbs of wild-type mice, with accompanying increases in phosphorylation of Akt and endothelial nitric-oxide synthase (eNOS). In contrast to wild-type mice, treatment with vildagliptin did not improve blood flow in ischemic muscles of eNOS-deficient mice. Treatment with vildagliptin increased the levels of glucagon-like peptide-1 (GLP-1) and adiponectin, which have protective effects on the vasculature. Both vildagliptin and GLP-1 increased the differentiation of cultured human umbilical vein endothelial cells (HUVECs) into vascular-like structures, although vildagliptin was less effective than GLP-1. GLP-1 and vildagliptin also stimulated the phosphorylation of Akt and eNOS in HUVECs. Pretreatment with a PI3 kinase or NOS inhibitor blocked the stimulatory effects of both vildagliptin and GLP-1 on HUVEC differentiation. Furthermore, treatment with vildagliptin only partially increased the limb flow of ischemic muscle in adiponectin-deficient mice in vivo. GLP-1, but not vildagliptin, significantly increased adiponectin expression in differentiated 3T3-L1 adipocytes in vitro. These data indicate that vildagliptin promotes endothelial cell function via eNOS signaling, an effect that may be mediated by both GLP-1-dependent and GLP-1-independent mechanisms. The beneficial activity of GLP-1 for revascularization may also be partially mediated by its ability to increase adiponectin production.


Journal of The American Society of Nephrology | 2015

Cardiac Myocyte-Derived Follistatin-Like 1 Prevents Renal Injury in a Subtotal Nephrectomy Model

Satoko Hayakawa; Koji Ohashi; Rei Shibata; Yoshiyuki Kataoka; Megumi Miyabe; Takashi Enomoto; Yusuke Joki; Yuuki Shimizu; Takahiro Kambara; Yusuke Uemura; Daisuke Yuasa; Hayato Ogawa; Kazuhiro Matsuo; Mizuho Hiramatsu-Ito; Maurice J.B. van den Hoff; Kenneth Walsh; Toyoaki Murohara; Noriyuki Ouchi

Heart disease contributes to the progression of CKD. Heart tissue produces a number of secreted proteins, also known as cardiokines, which participate in intercellular and intertissue communication. We recently reported that follistatin-like 1 (Fstl1) functions as a cardiokine with cardioprotective properties. Here, we investigated the role of cardiac Fstl1 in renal injury after subtotal nephrectomy. Cardiac-specific Fstl1-deficient (cFstl1-KO) mice and wild-type mice were subjected to subtotal (5/6) nephrectomy. cFstl1-KO mice showed exacerbation of urinary albumin excretion, glomerular hypertrophy, and tubulointerstitial fibrosis after subtotal renal ablation compared with wild-type mice. cFstl1-KO mice also exhibited increased mRNA levels of proinflammatory cytokines, including TNF-α and IL-6, NADPH oxidase components, and fibrotic mediators, in the remnant kidney. Conversely, systemic administration of adenoviral vectors expressing Fstl1 (Ad-Fstl1) to wild-type mice with subtotal nephrectomy led to amelioration of albuminuria, glomerular hypertrophy, and tubulointerstitial fibrosis, accompanied by reduced expression of proinflammatory mediators, NADPH oxidase components, and fibrotic markers in the remnant kidney. In cultured human mesangial cells, treatment with recombinant FSTL1 attenuated TNF-α-stimulated expression of proinflammatory cytokines. Treatment of mesangial cells with FSTL1 augmented the phosphorylation of AMP-activated protein kinase (AMPK), and inhibition of AMPK activation abrogated the anti-inflammatory effects of FSTL1. These data suggest that Fstl1 functions in cardiorenal communication and that the lack of Fstl1 production by myocytes promotes glomerular and tubulointerstitial damage in the kidney.


American Journal of Physiology-heart and Circulatory Physiology | 2014

Therapeutic angiogenesis by autologous adipose-derived regenerative cells: comparison with bone marrow mononuclear cells

Chang-Ning Hao; Satoshi Shintani; Yuuki Shimizu; Kazuhisa Kondo; Masakazu Ishii; Hongxian Wu; Toyoaki Murohara

Transplantation of adipose-derived regenerative cell (ADRC) enhances ischemia-induced angiogenesis, but the underlying mechanism remains unknown. Here, we compared the efficacy between ADRC and bone marrow mononuclear cell (BM-MNC) transplantation in rabbits model of hindlimb ischemia and examined the possible roles of alternative phenotypic macrophages polarization in ADRC-mediated angiogenesis using mice model of hindlimb ischemia. ADRCs and BM-MNCs were isolated from New Zealand White rabbits and C57BL/6J mice. In rabbit studies, our data showed that ADRCs could incorporate into the endothelial vasculature in vitro and in vivo. Both ADRC-conditioned media (CM) and BM-MNC-CM enhanced the migratory ability and interrupted the process of apoptosis in human umbilical vein endothelial cells. Four weeks after cell transplantation, augmentation of postnatal neovascularization was observed in the ischemic muscle injected with either ADRCs or BM-MNCs. In mice studies, we presented that ADRCs polarized into the IL-10-releasing M2 macrophages through PGE2-EP2/4 axis and suppressed the expressions of TNF-α and IL-6 in the ischemic muscle. Gene expressions of several angiogenic cytokines were amplified in the macrophages cultured in ADRC-CM rather than BM-MNC-CM. Blockade of IL-10 using neutralizing MAb attenuated the ADRC-mediated angiogenesis and caused muscle apoptosis in vivo. In conclusion, ADRC transplantation harvested similar effect of neovascularization augmentation compared with BM-MNC in experimental rabbit model of hindlimb ischemia; ADRC displayed a unique immunoregulatory manner of accelerating IL-10-releasing M2 macrophages polarization through the PGE2-EP2/4 axis.


Journal of the American Heart Association | 2012

Therapeutic Lymphangiogenesis With Implantation of Adipose-Derived Regenerative Cells

Yuuki Shimizu; Rei Shibata; Satoshi Shintani; Masakazu Ishii; Toyoaki Murohara

Background Lymphedema is one of the serious clinical problems that can occur after surgical resection of malignant tumors such as breast cancer or intra‐pelvic cancers. However, no effective treatment options exist at present. Here, we report that implantation of adipose‐derived regenerative cells (ADRCs) can induce lymphangiogenesis in a mouse model of reparative lymphedema. Methods and Results ADRCs were isolated from C57BL/6J mice. To examine the therapeutic efficacy of ADRC implantation in vivo, we established a new mouse model of tail lymphedema. Lymphedema was improved significantly by local injection of ADRCs (P<0.05). Histological analysis revealed that lymphatic capillary density was greater in the ADRC group than in the phosphate‐buffered saline control group (P<0.01). Tissue expression of vascular endothelial growth factor C mRNA and plasma levels of vascular endothelial growth factor C were greater in the ADRC group than in the control group (P<0.01 and P<0.05, respectively). ADRCs released vascular endothelial growth factor C, which directly stimulated lymphangiogenesis. Implantation of ADRCs also enhanced recruitment of bone marrow–derived M2 macrophages, which served as lymphatic endothelial progenitor cells. Conclusions Implantation of autologous ADRCs could be a useful treatment option for patients with severe lymphedema via mediation of lymphangiogenesis. (J Am Heart Assoc. 2012;1:e000877 doi: 10.1161/JAHA.112.000877.)


International Journal of Cardiology | 2014

Multilayered adipose-derived regenerative cell sheets created by a novel magnetite tissue engineering method for myocardial infarction

Masakazu Ishii; Rei Shibata; Yuuki Shimizu; Takashi Yamamoto; Kazuhisa Kondo; Yoko Inoue; Noriyuki Ouchi; Tohru Tanigawa; Noriyoshi Kanemura; Akira Ito; Hiroyuki Honda; Toyoaki Murohara

BACKGROUND Adipose-derived regenerative cells (ADRCs) are a promising source of autologous stem cells for regeneration and repair of damaged tissue. Herein, we investigated the therapeutic potential of ADRC sheets created by a magnetite tissue engineering technology (Mag-TE) for myocardial infarction. METHODS AND RESULTS Adipose tissue was obtained from wild-type (WT) mice and ADRCs were isolated. ADRCs incubated with magnetic nanoparticle-containing liposomes (MCLs) were cultured. MCL-labeled ADRCs were mixed with a diluted extracellular matrix (ECM) precursor, and a magnet was placed on the reverse side. Magnetized ADRCs formed multilayered cell sheets after a 24-h incubation. WT mice were subjected to myocardial infarction by permanent ligation of the left anterior descending artery. We then transplanted the constructed ADRC sheet or a cell-free collagen gel sheet, as a control, onto the infarcted myocardium using an Alnico magnet before skin closure. Cardiac parameters were measured by echocardiogram, and angiogenesis was determined by tissue capillary density. ADRC sheet-treated mice showed significant improvements in systolic function, infarct wall thinning, and fibrotic length after myocardial infarction. ADRC sheet implantation also promoted angiogenesis in both the infarct area and the border zone in WT mice after myocardial infarction. The angiogenic effects of ADRC sheets were attributed to an increased expression of VEGF and bFGF mRNA in ischemic hearts. CONCLUSIONS ADRC sheets created by this Mag-TE method protect the heart against pathological cardiac remodeling. Our ADRC sheets have the potential to be a novel regenerative strategy for ischemic heart disease.


Journal of Molecular and Cellular Cardiology | 2016

DJ-1 protects the heart against ischemia–reperfusion injury by regulating mitochondrial fission

Yuuki Shimizu; Jonathan P. Lambert; Chad K. Nicholson; Joshua J. Kim; David Wolfson; Hee Cheol Cho; Ahsan Husain; Nawazish Naqvi; Li-Shen Chin; Lian Li; John W. Calvert

Recent data indicates that DJ-1 plays a role in the cellular response to stress. Here, we aimed to examine the underlying molecular mechanisms mediating the actions of DJ-1 in the heart following myocardial ischemia-reperfusion (I/R) injury. In response to I/R injury, DJ-1 KO mice displayed increased areas of infarction and worsened left ventricular function when compared to WT mice, confirming a protective role for DJ-1 in the heart. In an effort to evaluate the potential mechanism(s) responsible for the increased injury in DJ-1 KO mice, we focused on SUMOylation, a post-translational modification process that regulates various aspects of protein function. DJ-1 KO hearts after I/R injury were found to display enhanced accumulation of SUMO-1 modified proteins and reduced SUMO-2/3 modified proteins. Further analysis, revealed that the protein expression of the de-SUMOylation enzyme SENP1 was reduced, whereas the expression of SENP5 was enhanced in DJ-1 KO hearts after I/R injury. Finally, DJ-1 KO hearts were found to display enhanced SUMO-1 modification of dynamin-related protein 1, excessive mitochondrial fission, and dysfunctional mitochondria. Our data demonstrates that the activation of DJ-1 in response to myocardial I/R injury protects the heart by regulating the SUMOylation status of Drp1 and attenuating excessive mitochondrial fission.


Skin Research and Technology | 2013

Effects of water nanodroplets on skin moisture and viscoelasticity during air-conditioning.

Hideo Ohno; Naoki Nishimura; Kuniyuki Yamada; Yuuki Shimizu; Satoshi Iwase; Junichi Sugenoya; Motohiko Sato

In air‐conditioned rooms, dry air exacerbates some skin diseases, for example, senile xerosis, atopic dermatitis, and surface roughness. Humidifiers are used to improve air dryness, which often induces excess humidity and thermal discomfort. To address this issue, we investigated the effects of water nanodroplets (mist) on skin hydration, which may increase skin hydration by penetrating into the interstitial spaces between corneocytes of the stratum corneum (SC) without increasing air humidity.


Circulation-heart Failure | 2016

Sodium Sulfide Attenuates Ischemic-Induced Heart Failure by Enhancing Proteasomal Function in an Nrf2-Dependent Manner

Yuuki Shimizu; Chad K. Nicholson; Jonathan P. Lambert; Larry A. Barr; Nicholas Kuek; David Herszenhaut; Lin Tan; Toyoaki Murohara; Jason M. Hansen; Ahsan Husain; Nawazish Naqvi; John W. Calvert

Background—Therapeutic strategies aimed at increasing hydrogen sulfide (H2S) levels exert cytoprotective effects in various models of cardiovascular injury. However, the underlying mechanism(s) responsible for this protection remain to be fully elucidated. Nuclear factor E2–related factor 2 (Nrf2) is a cellular target of H2S and facilitator of H2S-mediated cardioprotection after acute myocardial infarction. Here, we tested the hypothesis that Nrf2 mediates the cardioprotective effects of H2S therapy in the setting of heart failure. Methods and Results—Mice (12 weeks of age) deficient in Nrf2 (Nrf2 KO; C57BL/6J background) and wild-type littermates were subjected to ischemic-induced heart failure. Wild-type mice treated with H2S in the form of sodium sulfide (Na2S) displayed enhanced Nrf2 signaling, improved left ventricular function, and less cardiac hypertrophy after the induction of heart failure. In contrast, Na2S therapy failed to provide protection against heart failure in Nrf2 KO mice. Studies aimed at evaluating the underlying cardioprotective mechanisms found that Na2S increased the expression of proteasome subunits, resulting in an increased proteasome activity and a reduction in the accumulation of damaged proteins. In contrast, Na2S therapy failed to enhance the proteasome and failed to attenuate the accumulation of damaged proteins in Nrf2 KO mice. Additionally, Na2S failed to improve cardiac function when the proteasome was inhibited. Conclusions—These findings indicate that Na2S therapy enhances proteasomal activity and function during the development of heart failure in an Nrf2-dependent manner and that this enhancement leads to attenuation in cardiac dysfunction.

Collaboration


Dive into the Yuuki Shimizu's collaboration.

Top Co-Authors

Avatar

Satoshi Iwase

Aichi Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maki Sato

Aichi Medical University

View shared research outputs
Top Co-Authors

Avatar

Yoko Inukai

Aichi Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge