Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yuval Kluger is active.

Publication


Featured researches published by Yuval Kluger.


Molecular Cell | 2012

PCGF Homologs, CBX Proteins, and RYBP Define Functionally Distinct PRC1 Family Complexes

Zhonghua Gao; Jin Zhang; Roberto Bonasio; Francesco Strino; Ayana Sawai; Fabio Parisi; Yuval Kluger; Danny Reinberg

The heterogeneous nature of mammalian PRC1 complexes has hindered our understanding of their biological functions. Here, we present a comprehensive proteomic and genomic analysis that uncovered six major groups of PRC1 complexes, each containing a distinct PCGF subunit, a RING1A/B ubiquitin ligase, and a unique set of associated polypeptides. These PRC1 complexes differ in their genomic localization, and only a small subset colocalize with H3K27me3. Further biochemical dissection revealed that the six PCGF-RING1A/B combinations form multiple complexes through association with RYBP or its homolog YAF2, which prevents the incorporation of other canonical PRC1 subunits, such as CBX, PHC, and SCM. Although both RYBP/YAF2- and CBX/PHC/SCM-containing complexes compact chromatin, only RYBP stimulates the activity of RING1B toward H2AK119ub1, suggesting a central role in PRC1 function. Knockdown of RYBP in embryonic stem cells compromised their ability to form embryoid bodies, likely because of defects in cell proliferation and maintenance of H2AK119ub1 levels.


Pigment Cell & Melanoma Research | 2010

PLX4032, a selective BRAFV600E kinase inhibitor, activates the ERK pathway and enhances cell migration and proliferation of BRAFWT melanoma cells

Ruth Halaban; Wengeng Zhang; Antonella Bacchiocchi; Elaine Cheng; Fabio Parisi; Stephan Ariyan; Michael Krauthammer; James P. McCusker; Yuval Kluger; Mario Sznol

BRAFV600E/K is a frequent mutationally active tumor‐specific kinase in melanomas that is currently targeted for therapy by the specific inhibitor PLX4032. Our studies with melanoma tumor cells that are BRAFV600E/K and BRAFWT showed that, paradoxically, while PLX4032 inhibited ERK1/2 in the highly sensitive BRAFV600E/K, it activated the pathway in the resistant BRAFWT cells, via RAF1 activation, regardless of the status of mutations in NRAS or PTEN. The persistently active ERK1/2 triggered downstream effectors in BRAFWT melanoma cells and induced changes in the expression of a wide‐spectrum of genes associated with cell cycle control. Furthermore, PLX4032 increased the rate of proliferation of growth factor‐dependent NRAS Q61L mutant primary melanoma cells, reduced cell adherence and increased mobility of cells from advanced lesions. The results suggest that the drug can confer an advantage to BRAFWT primary and metastatic tumor cells in vivo and provide markers for monitoring clinical responses.


Nature Structural & Molecular Biology | 2000

Structural proteomics of an archaeon.

Dinesh Christendat; Adelinda Yee; Akil Dharamsi; Yuval Kluger; Alexei Savchenko; John R. Cort; Valerie Booth; Cameron D. Mackereth; Vivian Saridakis; Irena Ekiel; Guennadi Kozlov; Karen L. Maxwell; Ning Wu; Lawrence P. McIntosh; Kalle Gehring; Michael A. Kennedy; Alan R. Davidson; Emil F. Pai; Mark Gerstein; A. Edwards; C.H. Arrowsmith

A set of 424 nonmembrane proteins from Methanobacterium thermoautotrophicum were cloned, expressed and purified for structural studies. Of these, ∼20% were found to be suitable candidates for X-ray crystallographic or NMR spectroscopic analysis without further optimization of conditions, providing an estimate of the number of the most accessible structural targets in the proteome. A retrospective analysis of the experimental behavior of these proteins suggested some simple relations between sequence and solubility, implying that data bases of protein properties will be useful in optimizing high throughput strategies. Of the first 10 structures determined, several provided clues to biochemical functions that were not detectable from sequence analysis, and in many cases these putative functions could be readily confirmed by biochemical methods. This demonstrates that structural proteomics is feasible and can play a central role in functional genomics.


Cancer Research | 2007

High HSP90 expression is associated with decreased survival in breast cancer.

Elah Pick; Yuval Kluger; Jennifer M. Giltnane; Christopher B. Moeder; Robert L. Camp; David L. Rimm; Harriet M. Kluger

The heat shock protein HSP90 chaperones proteins implicated in breast cancer progression, including Her2/neu. HSP90-targeting agents are in clinical trials for breast cancer. HSP90 expression is high in breast cancer cell lines, yet no large studies have been conducted on expression in human tumors and the association with clinical/pathologic variables. Tissue microarrays containing 10 cell lines and primary specimens from 655 patients with 10-year follow-up were assessed using our automated quantitative analysis (AQUA) method; we used cytokeratin to define pixels as breast cancer (tumor mask) within the array spot and measured HSP90 expression within the mask using Cy5-conjugated antibodies. We similarly assessed estrogen receptor, progesterone receptor, and Her2/neu expression. HSP90 expression was more variable in human tumors than in cell lines (P < 0.0001). High HSP90 expression was associated with decreased survival (P = 0.0024). On multivariable analysis, high HSP90 expression remained an independent prognostic marker. High HSP90 expression was associated with high Her2/neu and estrogen receptor, large tumors, high nuclear grade, and lymph node involvement. Although HSP90 levels were high in all our cell lines, expression in tumors was more variable. High HSP90 expression in primary breast cancer defines a population of patients with decreased survival. Evaluation of HSP90 expression in early-stage breast cancer may identify a subset of patients requiring more aggressive or pathway-targeted treatment. Prospective studies are needed to confirm the prognostic role of HSP90, as well as the predictive role of HSP90 expression in patients treated with HSP90 inhibitors.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Genome-wide remodeling of the epigenetic landscape during myogenic differentiation

Patrik Asp; Roy Blum; Vasupradha Vethantham; Fabio Parisi; Mariann Micsinai; Jemmie Cheng; Christopher J. Bowman; Yuval Kluger; Brian David Dynlacht

We have examined changes in the chromatin landscape during muscle differentiation by mapping the genome-wide location of ten key histone marks and transcription factors in mouse myoblasts and terminally differentiated myotubes, providing an exceptionally rich dataset that has enabled discovery of key epigenetic changes underlying myogenesis. Using this compendium, we focused on a well-known repressive mark, histone H3 lysine 27 trimethylation, and identified novel regulatory elements flanking the myogenin gene that function as a key differentiation-dependent switch during myogenesis. Next, we examined the role of Polycomb-mediated H3K27 methylation in gene repression by systematically ablating components of both PRC1 and PRC2 complexes. Surprisingly, we found mechanistic differences between transient and permanent repression of muscle differentiation and lineage commitment genes and observed that the loss of PRC1 and PRC2 components produced opposing differentiation defects. These phenotypes illustrate striking differences as compared to embryonic stem cell differentiation and suggest that PRC1 and PRC2 do not operate sequentially in muscle cells. Our studies of PRC1 occupancy also suggested a “fail-safe” mechanism, whereby PRC1/Bmi1 concentrates at genes specifying nonmuscle lineages, helping to retain H3K27me3 in the face of declining Ezh2-mediated methyltransferase activity in differentiated cells.


Nucleic Acids Research | 2001

SPINE: an integrated tracking database and data mining approach for identifying feasible targets in high-throughput structural proteomics

Paul Bertone; Yuval Kluger; Ning Lan; Deyou Zheng; Dinesh Christendat; Adelinda Yee; A. Edwards; C.H. Arrowsmith; Gaetano T. Montelione; Mark Gerstein

High-throughput structural proteomics is expected to generate considerable amounts of data on the progress of structure determination for many proteins. For each protein this includes information about cloning, expression, purification, biophysical characterization and structure determination via NMR spectroscopy or X-ray crystallography. It will be essential to develop specifications and ontologies for standardizing this information to make it amenable to retrospective analysis. To this end we created the SPINE database and analysis system for the Northeast Structural Genomics Consortium. SPINE, which is available at bioinfo.mbb.yale.edu/nesg or nesg.org, is specifically designed to enable distributed scientific collaboration via the Internet. It was designed not just as an information repository but as an active vehicle to standardize proteomics data in a form that would enable systematic data mining. The system features an intuitive user interface for interactive retrieval and modification of expression construct data, query forms designed to track global project progress and external links to many other resources. Currently the database contains experimental data on 985 constructs, of which 740 are drawn from Methanobacterium thermoautotrophicum, 123 from Saccharomyces cerevisiae, 93 from Caenorhabditis elegans and the remainder from other organisms. We developed a comprehensive set of data mining features for each protein, including several related to experimental progress (e.g. expression level, solubility and crystallization) and 42 based on the underlying protein sequence (e.g. amino acid composition, secondary structure and occurrence of low complexity regions). We demonstrate in detail the application of a particular machine learning approach, decision trees, to the tasks of predicting a proteins solubility and propensity to crystallize based on sequence features. We are able to extract a number of key rules from our trees, in particular that soluble proteins tend to have significantly more acidic residues and fewer hydrophobic stretches than insoluble ones. One of the characteristics of proteomics data sets, currently and in the foreseeable future, is their intermediate size ( approximately 500-5000 data points). This creates a number of issues in relation to error estimation. Initially we estimate the overall error in our trees based on standard cross-validation. However, this leaves out a significant fraction of the data in model construction and does not give error estimates on individual rules. Therefore, we present alternative methods to estimate the error in particular rules.


Clinical Cancer Research | 2008

Expression of Aurora A (but Not Aurora B) Is Predictive of Survival in Breast Cancer

Yasmine Nadler; Robert L. Camp; Candice Schwartz; David L. Rimm; Harriet M. Kluger; Yuval Kluger

Purpose: The cell cycle mediators Aurora A and B are targets of drugs currently in clinical development. As with other targeted therapies in breast cancer, response to therapy might be associated with target expression in tumors. We therefore assessed expression of Aurora A and B in breast tumors and studied associations with clinical/pathologic variables. Experimental Design: Tissue microarrays containing primary specimens from 638 patients with 15-year follow-up were employed to assess expression of Aurora A and B using our automated quantitative analysis method; we used cytokeratin to define pixels as breast cancer (tumor mask) within the array spot and measured Aurora A and B expression within the mask using Cy5-conjugated antibodies. Results: Aurora A and B expression was variable in primary breast tumors. High Aurora A expression was strongly associated with decreased survival (P = 0.0005). On multivariable analysis, it remained an independent prognostic marker. High Aurora A expression was associated with high nuclear grade and high HER-2/neu and progesterone receptor expression. Aurora B expression was not associated with survival. Conclusions: Aurora A expression defines a population of patients with decreased survival, whereas Aurora B expression does not, suggesting that Aurora A might be the preferred drug target in breast cancer. Aurora A expression in early-stage breast cancer may identify a subset of patients requiring more aggressive or pathway-targeted treatment. Prospective studies are needed to confirm the prognostic role of Aurora A as well as the predictive role of Aurora A expression in patients treated with Aurora A inhibitors.


Molecular Cell | 2008

A Role for Mammalian Sin3 in Permanent Gene Silencing

Chris van Oevelen; Jinhua Wang; Patrik Asp; Qin Yan; William G. Kaelin; Yuval Kluger; Brian David Dynlacht

The multisubunit Sin3 corepressor complex regulates gene transcription through deacetylation of nucleosomes. However, the full range of Sin3 activities and targets is not well understood. Here, we have investigated genome-wide binding of mouse Sin3 and RBP2 as well as histone modifications and nucleosome positioning as a function of myogenic differentiation. Remarkably, we find that Sin3 complexes spread immediately downstream of the transcription start site on repressed and transcribed genes during differentiation. We show that RBP2 is part of a Sin3 complex and that on a subset of E2F4 target genes, the coordinated activity of Sin3 and RBP2 leads to deacetylation, demethylation, and repositioning of nucleosomes. Our work provides evidence for coordinated binding of Sin3, chromatin modifications, and chromatin remodeling within discrete regulatory regions, suggesting a model in which spreading of Sin3 binding is ultimately linked to permanent gene silencing on a subset of E2F4 target genes.


Progress in Biophysics & Molecular Biology | 2000

Structural proteomics: prospects for high throughput sample preparation

Dinesh Christendat; Adelinda Yee; Akil Dharamsi; Yuval Kluger; Mark Gerstein; C.H. Arrowsmith; A. Edwards

1. BackgroundWith the near completion of many genome sequencing projects has come the soberingrealisation that our understanding of biology is nowhere near complete. For example, inthe worm, C. elegans, less than half of the predicted proteins have a known function(Consortium, 1998). The major challenge facing biologists in the next decade will be to‘‘finish the job’’, that is, to ascribe a function to each of the proteins that have been discovered


Journal of Leukocyte Biology | 2004

Gene expression in mature neutrophils: early responses to inflammatory stimuli

Xueqing Zhang; Yuval Kluger; Yasuhiro Nakayama; Ranjana Poddar; Constance Whitney; Adam DeTora; Sherman M. Weissman; Peter E. Newburger

Neutrophils provide an essential defense against bacterial and fungal infection and play a major role in tissue damage during inflammation. Using oligonucleotide microarrays, we have examined the time course of changes in gene expression induced by stimulation with live, opsonized Escherichia coli, soluble lipopolysaccharide, and the chemoattractant formyl‐methionyl‐leucyl‐phenylalanine. The results indicate that activated neutrophils generate a broad and vigorous set of alterations in gene expression. The responses included changes in the levels of transcripts encoding 148 transcription factors and chromatin‐remodeling genes and 95 regulators of protein synthesis or stability. Clustering analysis showed distinct temporal patterns with many rapid changes in gene expression within the first hour of exposure. In addition to the temporal clustering of genes, we also observed rather different profiles associated with each stimulus, suggesting that even a nonvirulent organism such as E. coli is able to play a dynamic role in shaping the inflammatory response. Principal component analysis of transcription factor genes demonstrated clear separation of the neutrophil‐response clusters from those of resting and stimulated human monocytes. The present study indicates that combinatorial transcriptional regulation including alterations of chromatin structure may play a role in the rapid changes in gene expression that occur in these terminally differentiated cells.

Collaboration


Dive into the Yuval Kluger's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Emil Mottola

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge