Yuwei Xie
Nanjing University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yuwei Xie.
Chemosphere | 2016
Zhiyuan Ma; Song Tang; Guanyong Su; Yueqiu Miao; Hongling Liu; Yuwei Xie; John P. Giesy; David M.V. Saunders; Markus Hecker; Hongxia Yu
Due to phasing out of additive flame retardants such as polybrominated diphenyl ethers (PBDEs), Tris (2-butoxyethyl) phosphate (TBOEP) is widely used as a substitute. TBOEP is ubiquitous in the environment and has been measured at concentrations of micrograms per liter (μg L(-1)) in surface waters and wastewater. Information on potential adverse effects on development of aquatic organisms caused by exposure to environmentally relevant concentrations of TBOEP is limited, especially for effects that may be caused through impairment of endocrine-modulated homeostasis. Therefore, this study was conducted to determine effects of TBOEP on ontogeny and transcription profiles of genes along the hypothalamus-pituitary-thyroidal (HPT), hypothalamus-pituitary-adrenal (HPA), and hypothalamus-pituitary-gonadal (HPG) axes in embryos/larvae of zebrafish (Danio rerio). Exposure to TBOEP (2-5,000 μg L(-1)) from 3 h post-fertilization (hpf) to 120 hpf induced developmental malformations in zebrafish with a LC50 of 288.54 μg L(-1) at both 96 hpf and 120 hpf. The predicted no observed effect concentration (PNOEC) was 2.40 μg L(-1). Exposure to 2, 20, or 200 μg TBOEP L(-1) altered expression of genes involved in three major molecular pathways in a concentration-dependent manner after 120 hpf. TBOEP caused lesser expression of some genes involved in synthesis of hormones, such as (pomc and fshβ) as well as upregulating expression of some genes coding for receptors (thr, tshr, gr, mr, er and ar) in zebrafish larvae. These changes at the molecular level could result in alterations of endocrine function, which could result in edema or deformity and ultimately death.
Scientific Reports | 2016
Nanyang Yu; Si Wei; Meiying Li; Jingping Yang; Kan Li; Ling Jin; Yuwei Xie; John P. Giesy; Xiaowei Zhang; Hongxia Yu
Perfluorooctanoic acid (PFOA), a perfluoroalkyl acid, can result in hepatotoxicity and neurobehavioral effects in animals. The metabolome, which serves as a connection among transcriptome, proteome and toxic effects, provides pathway-based insights into effects of PFOA. Since understanding of changes in the metabolic profile during hepatotoxicity and neurotoxicity were still incomplete, a high-throughput targeted metabolomics approach (278 metabolites) was used to investigate effects of exposure to PFOA for 28 d on brain and liver of male Balb/c mice. Results of multivariate statistical analysis indicated that PFOA caused alterations in metabolic pathways in exposed individuals. Pathway analysis suggested that PFOA affected metabolism of amino acids, lipids, carbohydrates and energetics. Ten and 18 metabolites were identified as potential unique biomarkers of exposure to PFOA in brain and liver, respectively. In brain, PFOA affected concentrations of neurotransmitters, including serotonin, dopamine, norepinephrine, and glutamate in brain, which provides novel insights into mechanisms of PFOA-induced neurobehavioral effects. In liver, profiles of lipids revealed involvement of β-oxidation and biosynthesis of saturated and unsaturated fatty acids in PFOA-induced hepatotoxicity, while alterations in metabolism of arachidonic acid suggesting potential of PFOA to cause inflammation response in liver. These results provide insight into the mechanism and biomarkers for PFOA-induced effects.
Environmental Science & Technology | 2017
Jianghua Yang; Xiaowei Zhang; Yuwei Xie; Chao Song; Jingying Sun; Yong Zhang; John P. Giesy; Hongxia Yu
Communities of zooplankton can be adversely affected by contamination resulting from human activities. Yet understanding the influence of water quality on zooplankton under field-conditions is hindered by traditional labor-intensive approaches that are prone to incomplete or uncertain taxonomic determinations. Here, for the first time, an eco-genomic approach, based on genetic diversity in the mitochondrial cytochrome c oxidase I (COI) region of DNA of zooplankton was used to develop a site-specific, water quality criterion (WQC) for ammonia (NH3). Ammonia has been recognized as a primary stressor in the catchment of the large, eutrophic Tai Lake, China. Nutrients, especially NH3 and nitrite (NO3-) had more significant effects on structure of the zooplankton community than did other environmental factors. Abundances of rotifers increased along a gradient of increasing concentrations of total ammonia nitrogen (TAN), while abundances of copepods and cladocera decreased. A novel, rapid, species sensitivity distribution (SSD) approach based on operational taxonomic units (OTUs) was established to develop a WQC for NH3. The WQC based on OTUs was consistent with the WQC based on the traditional morphology taxonomy approach. This genetics-based SSD approach could be a useful tool for monitoring for status and trends in species composition and deriving ecological criteria and an efficient biomonitoring tool to protect local aquatic ecosystems in virtually any aquatic ecosystem.
Scientific Reports | 2015
Minghui Liu; Ze-Peng Du; Yuwei Xie; Xuri Li; Zhiyu Yan; J.-M. Liu
The eg-orbital double-exchange mechanism as the core of physics of colossal magnetoresistance (CMR) manganites is well known, which usually covers up the role of super-exchange at the t2g-orbitals. The role of the double-exchange mechanism is maximized in La0.7Ca0.3MnO3, leading to the concurrent metal-insulator transition and ferromagnetic transition as well as CMR effect. In this work, by a set of synchronous Ru-substitution and Ca-substitution experiments on La0.7–yCa0.3+yMn1–yRuyO3, we demonstrate that the optimal ferromagnetism in La0.7Ca0.3MnO3 can be further enhanced. It is also found that the metal-insulator transition and magnetic transition can be separately modulated. By well-designed experimental schemes with which the Mn3+-Mn4+ double-exchange is damaged as weakly as possible, it is revealed that this ferromagnetism enhancement is attributed to the Mn-Ru t2g ferromagnetic super-exchange. The present work allows a platform on which the electro-transport and magnetism of rare-earth manganites can be controlled by means of the t2g-orbital physics of strongly correlated transition metal oxides.
Aquatic Toxicology | 2015
Zhiyuan Ma; Yijun Yu; Song Tang; Hongling Liu; Guanyong Su; Yuwei Xie; John P. Giesy; Markus Hecker; Hongxia Yu
As one substitute for phased-out brominated flame retardants (BFRs), tris(2-butoxyethyl) phosphate (TBOEP) is frequently detected in aquatic organisms. However, knowledge about endocrine disrupting mechanisms associated with nuclear receptors caused by TBOEP remained restricted to results from in vitro studies with mammalian cells. In the study, results of which are presented here, embryos/larvae of zebrafish (Danio rerio) were exposed to 0.02, 0.1 or 0.5μM TBOEP to investigate expression of genes under control of several nuclear hormone receptors (estrogen receptors (ERs), androgen receptor (AR), thyroid hormone receptor alpha (TRα), mineralocorticoid receptor (MR), glucocorticoid receptor (GR), aryl hydrocarbon (AhR), peroxisome proliferator-activated receptor alpha (PPARα), and pregnane×receptor (P×R)) pathways at 120hpf. Exposure to 0.5μM TBOEP significantly (p<0.05, one-way analysis of variance) up-regulated expression of estrogen receptors (ERs, er1, er2a, and er2b) genes and ER-associated genes (vtg4, vtg5, pgr, ncor, and ncoa3), indicating TBOEP modulates the ER pathway. In contrast, expression of most genes (mr, 11βhsd, ube2i,and adrb2b) associated with the mineralocorticoid receptor (MR) pathway were significantly down-regulated. Furthermore, in vitro mammalian cell-based (MDA-kb2 and H4IIE-luc) receptor transactivation assays, were also conducted to investigate possible agonistic or antagonistic effects on AR- and AhR-mediated pathways. In mammalian cells, none of these pathways were affected by TBOEP at the concentrations studied. Receptor-mediated responses (in vivo) and mammalian cell lines receptor binding assay (in vitro) combined with published information suggest that TBOEP can modulate receptor-mediated, endocrine process (in vivo/in vitro), particularly ER and MR.
Scientific Reports | 2017
Jianghua Yang; Xiaowei Zhang; Yuwei Xie; Chao Song; Yong Zhang; Hongxia Yu; G. Allen Burton
Communities of zooplankton, a critical portion of aquatic ecosystems, can be adversely affected by contamination resulting from human activities. Understanding the influence of environmental change on zooplankton communities under field-conditions is hindered by traditional labor-intensive approaches that are prone to taxonomic and enumeration mistakes. Here, metabarcoding of cytochrome c oxidase I (COI) region of mitochondrial DNA was used to characterize the genetic diversity of zooplankton. The species composition of zooplankton communities determined by metabarcoding was consistent with the results based on the traditional morphological approach. The spatial distribution of common species (frequency of occurrence >10 samples) by metabarcoding exhibited good agreement with morphological data. Furthermore, metabarcoding can clearly distinguish the composition of the zooplankton community between lake and river ecosystems. In general, rotifers were more abundant in riverine environments than lakes and reservoirs. Finally, the sequence read number of different taxonomic groups using metabarcoding was positively correlated with the zooplankton biomass inferred by density and body length of zooplankton. Overall, the utility of metabarcoding for taxonomic profiling of zooplankton communities was validated by the morphology-based method on a large ecological scale. Metabarcoding of COI could be a powerful and efficient biomonitoring tool to protect local aquatic ecosystems.
Chemosphere | 2017
Yuwei Xie; Seongjin Hong; Seonjin Kim; Xiaowei Zhang; Jianghua Yang; John P. Giesy; Tieyu Wang; Yonglong Lu; Hongxia Yu; Jong Seong Khim
Benthic communities in the aquatic ecosystem are influenced by both natural and anthropogenic stressors. To understand the ecogenomic responses of sediment communities to the multiple stressors of polluted environments, the bacteria, protistan and metazoan communities in sediments from marine and adjacent riverine areas of North Bohai Sea were characterized by environmental DNA meta-systematics, and their associations with environmental variables were assessed by multiple statistical approaches. The bacterial communities were dominated by Firmicutes (mean 22.4%), Proteobacteria (mean 21.6%) and Actinobacteria (mean 21.5%). The protistan communities were dominated by Ochrophyta (33.7%), Cercozoa (18.9%) and Ciliophora (17.9%). Arthropoda (71.1%) dominated the metazoan communities in sediments. The structures of communities in sediments were shaped by both natural variables (spatial variability and/or salinity (presented as Na and Ca)) and anthropogenic contaminants, including DDTs, PAHs or metals (Cu, Al, Co, Cr, Cu, Fe, K, Mg, Mn, Ni and Zn). Particularly, the correlation network of multiple communities was modulated by the concentrations of Na and DDTs at the family level. Overall, environmental DNA meta-systematics can provide a powerful tool for biomonitoring, sediment quality assessment, and key stressors identification.
Scientific Reports | 2016
Yuwei Xie; Pu Xia; Hui Wang; Hongxia Yu; John P. Giesy; Yimin Zhang; Miguel A. Mora; Xiaowei Zhang
Reintroduction of the threatened red-crowned crane has been unsuccessful. Although gut microbiota correlates with host health, there is little information on gut microbiota of cranes under different conservation strategies. The study examined effects of captivity, artificial breeding and life stage on gut microbiota of red-crown cranes. The gut microbiotas of wild, captive adolescent, captive adult, artificially bred adolescent and artificially bred adult cranes were characterized by next-generation sequencing of 16S rRNA gene amplicons. The gut microbiotas were dominated by three phyla: Firmicutes (62.9%), Proteobacteria (29.9%) and Fusobacteria (9.6%). Bacilli dominated the ‘core’ community consisting of 198 operational taxonomic units (OTUs). Both captivity and artificial breeding influenced the structures and diversities microbiota of the gut. Especially, wild cranes had distinct compositions of gut microbiota from captive and artificially bred cranes. The greatest alpha diversity was found in captive cranes, while wild cranes had the least. According to the results of ordination analysis, influences of captivity and artificial breeding were greater than that of life stage. Overall, captivity and artificial breeding influenced the gut microbiota, potentially due to changes in diet, vaccination, antibiotics and living conditions. Metagenomics can serve as a supplementary non-invasive screening tool for disease control.
Scientific Reports | 2015
P. Chu; Dongyang Chen; Y. L. Wang; Yuwei Xie; Zhibo Yan; Jianguo Wan; J.-M. Liu; Jiangyu Li
The dielectric and ferroelectric behaviors of a ferroelectric are substantially determined by its domain structure and domain wall dynamics at mesoscopic level. A relationship between the domain walls and high frequency mesoscopic dielectric response is highly appreciated for high frequency applications of ferroelectrics. In this work we investigate the low electric field driven motion of 90°-domain walls and the frequency-domain spectrum of dielectric permittivity in normally strained ferroelectric lattice using the phase-field simulations. It is revealed that, the high-frequency dielectric permittivity is spatially inhomogeneous and reaches the highest value on the 90°-domain walls. A tensile strain favors the parallel domains but suppresses the kinetics of the 90° domain wall motion driven by electric field, while the compressive strain results in the opposite behaviors. The physics underlying the wall motions and thus the dielectric response is associated with the long-range elastic energy. The major contribution to the dielectric response is from the polarization fluctuations on the 90°-domain walls, which are more mobile than those inside the domains. The relevance of the simulated results wth recent experiments is discussed.
Chemosphere | 2017
Yuwei Xie; Ji-Zhong Wang; Jianghua Yang; John P. Giesy; Hongxia Yu; Xiaowei Zhang
Land-use intensification threatens freshwater biodiversity. Freshwater eukaryotic communities are affected by multiple chemical contaminants with a land-use specific manner. However, biodiversities of eukaryotes and their associations with multiple chemical contaminants are largely unknown. This study characterized in situ eukaryotic communities in sediments exposed to mixtures of chemical contaminants and assessed relationships between various environmental variables and eukaryotic communities in sediments from the Nanfei River. Eukaryotic communities in the sediment samples were dominated by Annelida, Arthropoda, Rotifera, Ochrophyta, Chlorophyta and Ciliophora. Alpha-diversities (Shannon entropy) and structures of eukaryotic communities were significantly different between land-use types. According to the results of multiple statistical tests (PCoA, distLM, Mantel and network analysis), dissimilarity of eukaryotic community structures revealed the key effects of pyrethroid insecticides, manganese, zinc, lead, chromium and polycyclic aromatic hydrocarbons (PAHs) on eukaryotic communities in the sediment samples from the Nanfei River. Furthermore, taxa associated with land-use types were identified and several sensitive eukaryotic taxa to some of the primary contaminants were identified as potential indicators to monitor effects of the primary chemical contaminants. Overall, environmental DNA metabarcoding on in situ eukaryotic communities provided a powerful tool for biomonitoring and identifying primary contaminants and their complex effects on benthic eukaryotic communities in freshwater sediments.